Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Growth cone "collapse" in vivo: are inhibitory interactions mediated by gap junctions?

LR Wolszon, WQ Gao, MB Passani and ER Macagno
Journal of Neuroscience 1 March 1994, 14 (3) 999-1010; DOI: https://doi.org/10.1523/JNEUROSCI.14-03-00999.1994
LR Wolszon
Department of Biological Sciences, Columbia University, New York, New York 10027.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WQ Gao
Department of Biological Sciences, Columbia University, New York, New York 10027.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MB Passani
Department of Biological Sciences, Columbia University, New York, New York 10027.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ER Macagno
Department of Biological Sciences, Columbia University, New York, New York 10027.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the leech embryo, oppositely directed axons of homologous anterior pagoda (AP) neurons overlap with each other extensively within the nerves that link adjacent ganglia, and inhibit each other's further growth (Gao and Macagno, 1987b). During this 5–8 d period of inhibition, the axons begin to grow thin, and eventually they retract completely. However, deletion of one overlapping AP cell results in the renewed growth of the remaining AP cell's axon, which then innervates territory vacated by the killed cell. Thus, each neuron can detect the presence of the other, and adjust its branching pattern accordingly. To begin to explore how these neurons detect and inhibit each other, we tested for direct communication between them. Dye fills with fluorescent chromophores suggested direct contact between their axons at the light level, and this was confirmed by serial-section electron microscopic analysis. Morphological features resembling aspects of gap junctions were observed where the projections were closely apposed, and subsequent electrophysiological recordings demonstrated electrical coupling between the mutually inhibited axons. Confirmation that these projections communicate via gap junctions was obtained using intracellular injection of 5-HT as a tracer, followed by anti-5-HT immunohistochemistry. The tracer passed selectively between AP neurons. We propose that the gap junctions formed between the transient projections of the developing AP neurons may mediate the exchange of the signals that permit homologs to recognize each other and to inhibit the further forward progress of these projections.

Back to top

In this issue

The Journal of Neuroscience: 14 (3)
Journal of Neuroscience
Vol. 14, Issue 3
1 Mar 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Growth cone "collapse" in vivo: are inhibitory interactions mediated by gap junctions?
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Growth cone "collapse" in vivo: are inhibitory interactions mediated by gap junctions?
LR Wolszon, WQ Gao, MB Passani, ER Macagno
Journal of Neuroscience 1 March 1994, 14 (3) 999-1010; DOI: 10.1523/JNEUROSCI.14-03-00999.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Growth cone "collapse" in vivo: are inhibitory interactions mediated by gap junctions?
LR Wolszon, WQ Gao, MB Passani, ER Macagno
Journal of Neuroscience 1 March 1994, 14 (3) 999-1010; DOI: 10.1523/JNEUROSCI.14-03-00999.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.