Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways

VP Ferrera, TA Nealey and JH Maunsell
Journal of Neuroscience 1 April 1994, 14 (4) 2080-2088; DOI: https://doi.org/10.1523/JNEUROSCI.14-04-02080.1994
VP Ferrera
Department of Physiology, University of Rochester, New York 14642–8642.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TA Nealey
Department of Physiology, University of Rochester, New York 14642–8642.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JH Maunsell
Department of Physiology, University of Rochester, New York 14642–8642.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A substantial body of evidence has suggested that signals transmitted through the magnocellular and parvocellular subdivisions of the LGN remain largely segregated in visual cortex. This hypothesis can be tested directly by selectively blocking transmission through either the magnocellular or parvocellular layers with small injections of lidocaine or GABA while recording cortical responses to a visual stimulus. In a previous study, we found that responses in the middle temporal visual area (MT) were almost always greatly reduced by blocks of magnocellular LGN, but that few MT neurons were affected by parvocellular blocks. In the present study, we have examined magnocellular and parvocellular contributions to area V4, which lies at the same level of processing in the cortical hierarchy as does MT and is thought to be a major recipient of parvocellular input. We found that inactivation of parvocellular layers usually resulted in a moderate reduction of visual responses (median reduction, 36%). However, comparable reductions in V4 responses were also seen following magnocellular blocks (median reduction, 47%). Directionally selective responses in V4 were not found to depend specifically on either subdivision. We conclude that area V4, unlike MT, receives strong input from both subdivisions of the LGN. These results suggest that the relationship between the subcortical magnocellular and parvocellular pathways and the parietal and temporal streams of processing in cortex is not one-to-one.

Back to top

In this issue

The Journal of Neuroscience: 14 (4)
Journal of Neuroscience
Vol. 14, Issue 4
1 Apr 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways
VP Ferrera, TA Nealey, JH Maunsell
Journal of Neuroscience 1 April 1994, 14 (4) 2080-2088; DOI: 10.1523/JNEUROSCI.14-04-02080.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways
VP Ferrera, TA Nealey, JH Maunsell
Journal of Neuroscience 1 April 1994, 14 (4) 2080-2088; DOI: 10.1523/JNEUROSCI.14-04-02080.1994
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.