Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Use-dependent growth of pyramidal neurons after neocortical damage

TA Jones and T Schallert
Journal of Neuroscience 1 April 1994, 14 (4) 2140-2152; DOI: https://doi.org/10.1523/JNEUROSCI.14-04-02140.1994
TA Jones
Department of Psychology, University of Texas at Austin 78712.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Schallert
Department of Psychology, University of Texas at Austin 78712.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Unilateral damage to the forelimb representation area of the sensorimotor cortex in adult rats increases dendritic arborization of layer V pyramidal neurons of the contralateral homotopic cortex. Arbor size was maximum at approximately 18 d postlesion, following which there was a partial elimination, or pruning, of dendritic processes. These neural changes were closely associated with behavioral events. The overgrowth of dendrites was related in time to disuse of the contralateral (to the lesion) forelimb and over-reliance on the ipsilateral forelimb for postural and exploratory movements. The pruning of dendrites was related to a return to more symmetrical use of the forelimbs. To investigate the possibility that lesion-induced asymmetries in motor behavior contributed to dendritic arborization changes, movements of the forelimb ipsilateral to the lesion were restricted during the period of dendritic overgrowth through the use of one-holed vests. This interfered with the increase in dendritic arborization. In contrast, animals that were allowed to use both forelimbs, or only the forelimb ipsilateral to the lesion, showed the expected increases. When sham-operated rats were forced to use only one forelimb, no significant increases in arborization were found. Therefore, neither a lesion nor asymmetrical limb use alone could account for the dendritic overgrowth--it depended on a lesion-behavior interaction. Furthermore, greater sensorimotor impairments were found when the dendritic growth was blocked, suggesting that the neural growth and/or associated limb-use behavior were related to functional recovery from the cortical damage. Finally, in a second experiment, immobilization of the impaired limb during the pruning period did not prevent the elimination of processes. Thus, the pruning of neural processes was not related simply to the recovery of more symmetrical forelimb use. There may be a period early after brain damage during which marked neural structural changes can occur in the presence of adequate behavioral demand.

Back to top

In this issue

The Journal of Neuroscience: 14 (4)
Journal of Neuroscience
Vol. 14, Issue 4
1 Apr 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Use-dependent growth of pyramidal neurons after neocortical damage
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Use-dependent growth of pyramidal neurons after neocortical damage
TA Jones, T Schallert
Journal of Neuroscience 1 April 1994, 14 (4) 2140-2152; DOI: 10.1523/JNEUROSCI.14-04-02140.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Use-dependent growth of pyramidal neurons after neocortical damage
TA Jones, T Schallert
Journal of Neuroscience 1 April 1994, 14 (4) 2140-2152; DOI: 10.1523/JNEUROSCI.14-04-02140.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.