Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C

J Mao, DD Price and DJ Mayer
Journal of Neuroscience 1 April 1994, 14 (4) 2301-2312; DOI: https://doi.org/10.1523/JNEUROSCI.14-04-02301.1994
J Mao
Department of Anesthesiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DD Price
Department of Anesthesiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DJ Mayer
Department of Anesthesiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In a rat model of morphine tolerance, we examined the hypotheses that thermal hyperalgesia to radiant heat develops in association with the development of morphine tolerance and that both the development and expression of thermal hyperalgesia in morphine-tolerant rats are mediated by central NMDA and non-NMDA receptors and subsequent protein kinase C (PKC) activation. Tolerance to the analgesic effect of morphine was developed in rats utilizing an intrathecal repeated treatment regimen. The development of morphine tolerance and thermal hyperalgesia was examined by employing the tail-flick test and paw- withdrawal test, respectively. Intrathecal MK 801 (an NMDA receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; a non-NMDA receptor antagonist), or GM1 ganglioside (an intracellular PKC inhibitor) treatment was given to examine the effects of these agents on the development and expression of thermal hyperalgesia in morphine- tolerant rats. Tolerance to the analgesic effect of morphine was reliably developed in rats following once daily intrathecal (onto the lumbosacral spinal cord) injection of 10 micrograms of morphine sulfate for 8 consecutive days as demonstrated by the decreased analgesia following morphine administration on day 8 as compared to that on day 1. In association with the development of morphine tolerance, thermal hyperalgesia to radiant heat developed in these same rats. Paw- withdrawal latencies were reliably decreased in morphine-tolerant rats as compared to nontolerant (saline) controls when tested on day 8 before the last morphine treatment and on day 10 (i.e., 48 hr after the last morphine treatment). The coincident development of morphine tolerance and thermal hyperalgesia was potently prevented by intrathecal coadministration of morphine with MK 801 (10 nmol) or GM1 (160 nmol), and partially by CNQX (80 nmol). MK 801 (5, 10 nmol, not 2.5 nmol) and CNQX (80, 160 nmol, not 40 nmol), but not GM1 (160 nmol), also reliably reversed thermal hyperalgesia in rats rendered tolerant to morphine when tested 30 min after each drug treatment on day 10 (48 hr after the last morphine treatment). The data indicate that thermal hyperalgesia develops in association with the development of morphine tolerance and that the coactivation of central NMDA and non-NMDA receptors is crucial for both the development and expression of thermal hyperalgesia in morphine-tolerant rats. Furthermore, intracellular PKC activation plays a critical role in the development of thermal hyperalgesia in morphine-tolerant rats.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 14 (4)
Journal of Neuroscience
Vol. 14, Issue 4
1 Apr 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C
J Mao, DD Price, DJ Mayer
Journal of Neuroscience 1 April 1994, 14 (4) 2301-2312; DOI: 10.1523/JNEUROSCI.14-04-02301.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C
J Mao, DD Price, DJ Mayer
Journal of Neuroscience 1 April 1994, 14 (4) 2301-2312; DOI: 10.1523/JNEUROSCI.14-04-02301.1994
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.