Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat

PE Sharp and C Green
Journal of Neuroscience 1 April 1994, 14 (4) 2339-2356; DOI: https://doi.org/10.1523/JNEUROSCI.14-04-02339.1994
PE Sharp
Department of Psychology, Yale University, New Haven, Connecticut 06520.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Green
Department of Psychology, Yale University, New Haven, Connecticut 06520.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Hippocampal lesions cause spatial learning deficits, and single hippocampal cells show location-specific firing patterns, known as place fields. This suggests the hippocampus plays a critical role in navigation by providing an ongoing indication of the animal's momentary spatial location. One question that has received little attention is how this locational signal is used by downstream brain regions to orchestrate actual navigational behavior. As a first step, we have examined the spatial firing correlates of cells in the dorsal subiculum as rats navigate in an open-field, pellet-searching task. The subiculum is one of the few major output zones for the hippocampus, and it, in turn, projects to numerous other brain areas, each thought to be involved in various learning and memory functions. Most subicular cells showed a robust locational signal. The patterns observed were different from those in the hippocampus, however, in that cells tended to fire throughout much of the environment, but showed graded, location-related rate modulation, such that there were some localized regions of high firing and other regions with relatively low firing. There were slight quantitative differences between the proximal (adjacent to the hippocampus) and distal (farther from the hippocampus) subicular regions, with distal cells showing slightly higher average firing rates, spatial signaling, and firing field size. This was of interest since these two regions have different efferent connections. Examination of spike trains allowed classification of cells into bursting, nonbursting, and theta (putative interneuron) categories, and this is similar to subicular cell types identified in vitro. Interestingly, the bursting and nonbursting types did not differ detectably in spatial firing properties, suggesting that differences in intrinsic membrane properties do not necessitate differences in coding of environmental inputs. The results suggest that the subiculum transmits a robust, highly distributed spatial signal to each of its projection areas, and that this signal is transmitted in both a bursting and nonbursting mode.

Back to top

In this issue

The Journal of Neuroscience: 14 (4)
Journal of Neuroscience
Vol. 14, Issue 4
1 Apr 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat
PE Sharp, C Green
Journal of Neuroscience 1 April 1994, 14 (4) 2339-2356; DOI: 10.1523/JNEUROSCI.14-04-02339.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat
PE Sharp, C Green
Journal of Neuroscience 1 April 1994, 14 (4) 2339-2356; DOI: 10.1523/JNEUROSCI.14-04-02339.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.