Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Opposite responses of mesolimbic dopamine system to controllable and uncontrollable aversive experiences

S Cabib and S Puglisi-Allegra
Journal of Neuroscience 1 May 1994, 14 (5) 3333-3340; DOI: https://doi.org/10.1523/JNEUROSCI.14-05-03333.1994
S Cabib
Istituto di Psicobiologia e Psicofarmacologia, CNR Roma, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Puglisi-Allegra
Istituto di Psicobiologia e Psicofarmacologia, CNR Roma, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

It has been previously shown that rodents exposed to stressful experiences show a biphasic response of the mesolimbic dopamine (DA) system, that is, initial increase of DA release followed by a decrease below control levels (Puglisi-Allegra et al., 1991). Evidence is now presented showing that mice exposed to a series of foot shocks show an increase of DA release in the nucleus accumbens septi (NAS) if they are allowed to control the shock experience (shocked condition) and a decrease of DA release in this brain area if they are not allowed to exert any control (yoked condition). These results indicate that escapable/controllable and inescapable/uncontrollable aversive experiences elicit opposite responses from the mesolimbic DA system. Mice exposed to the apparatus without receiving shock (sham condition) show a time-dependent biphasic evolution mesolimbic DA release in line with previous reports indicating that confinement in an unknown environment represents a stressful experience for mice. Moreover, exposure to the sham condition for a time comparable to the duration of shock and yoked exposure induces a mesolimbic DA response only quantitatively different from the response of the yoked group but qualitatively different from the response of the shocked mice. These results suggest that in environmental conditions that allow behavioral control, enhanced mesolimbic DA release is maintained regardless of the intensity of the aversive stimuli. On the other hand, evaluation of changes in acid DA metabolites levels in the frontal cortex (FC) of mice exposed to the shocked, yoked, and sham conditions suggests that stressful experiences characterized by a different intensity of the aversive stimuli could elicit graded responses in the FC DA system.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 14 (5)
Journal of Neuroscience
Vol. 14, Issue 5
1 May 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Opposite responses of mesolimbic dopamine system to controllable and uncontrollable aversive experiences
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Opposite responses of mesolimbic dopamine system to controllable and uncontrollable aversive experiences
S Cabib, S Puglisi-Allegra
Journal of Neuroscience 1 May 1994, 14 (5) 3333-3340; DOI: 10.1523/JNEUROSCI.14-05-03333.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Opposite responses of mesolimbic dopamine system to controllable and uncontrollable aversive experiences
S Cabib, S Puglisi-Allegra
Journal of Neuroscience 1 May 1994, 14 (5) 3333-3340; DOI: 10.1523/JNEUROSCI.14-05-03333.1994
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.