Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Independent control of dendritic and axonal form in the developing lateral geniculate nucleus

MB Dalva, A Ghosh and CJ Shatz
Journal of Neuroscience 1 June 1994, 14 (6) 3588-3602; https://doi.org/10.1523/JNEUROSCI.14-06-03588.1994
MB Dalva
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Ghosh
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CJ Shatz
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To identify mechanisms that regulate neuronal form in the mammalian CNS, we have examined dendritic development in the lateral geniculate nucleus (LGN) during the period of segregation of retinal ganglion cell axons. The tracer Dil was used to label retrogradely LGN neurons that send their axons to primary visual cortex at different ages between embryonic day 36 (E36) and E60 in the cat. LGN neurons grow extensively during this period, in concert with the progressive restriction of ganglion cell axons from the two eyes to their appropriate eye-specific layers. At E36 neurons have simple bipolar morphology; by E60 all have acquired complex multipolar dendritic trees. During this period, soma size increases by 190% and total dendritic length increases 240%. Dendritic complexity, as measured by dendritic branch points, also increases. As dendrites grow, the number of spines increases, but their density remains constant at 0.015/micron throughout this period. Since it is known that blockade of action potential activity significantly alters the branching pattern and extent of retinal ganglion cell axonal arbors within the LGN, we also investigated whether the dendritic development of the postsynaptic LGN neurons is similarly susceptible. Following 2 weeks of the intracranial minipump infusion of TTX between E42 and E56, the morphology of LGN neurons was examined. Surprisingly in view of the striking effect of the treatment on the morphology of retinal ganglion cell axons, dendritic growth and development were essentially normal. However, the density of dendritic spines increased almost threefold, suggesting that this specific feature of dendritic morphology is highly regulated by action potential activity. These observations indicate that normally during this period of development, the previously described changes that occur in the morphology of the presynaptic inputs to LGN neurons are accompanied by a progressive growth of post-synaptic dendrites. Because the intracranial TTX infusions have almost certainly blocked all sodium action potentials, our results suggest that the basic dendritic framework of LGN neurons can be achieved even in the absence of this form of neural activity. Moreover, since the same treatment causes a profound change in the morphology of the presynaptic axons, at least some aspects of axonal and dendritic form must be controlled independently during this prenatal period of development.

Back to top

In this issue

The Journal of Neuroscience: 14 (6)
Journal of Neuroscience
Vol. 14, Issue 6
1 Jun 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Independent control of dendritic and axonal form in the developing lateral geniculate nucleus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Independent control of dendritic and axonal form in the developing lateral geniculate nucleus
MB Dalva, A Ghosh, CJ Shatz
Journal of Neuroscience 1 June 1994, 14 (6) 3588-3602; DOI: 10.1523/JNEUROSCI.14-06-03588.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Independent control of dendritic and axonal form in the developing lateral geniculate nucleus
MB Dalva, A Ghosh, CJ Shatz
Journal of Neuroscience 1 June 1994, 14 (6) 3588-3602; DOI: 10.1523/JNEUROSCI.14-06-03588.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.