Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Bidirectional synaptic transmission in Necturus taste buds

DA Ewald and SD Roper
Journal of Neuroscience 1 June 1994, 14 (6) 3791-3804; DOI: https://doi.org/10.1523/JNEUROSCI.14-06-03791.1994
DA Ewald
Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SD Roper
Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Pairs of taste cells were impaled with intracellular recording microelectrodes in intact taste buds in slices of Necturus lingual epithelium. Applying short pulses of 140 mM KCl or 200 mM CaCl2 solutions to the apical pore elicited receptor potentials in taste receptor cells. Chemostimulation of receptor cells elicited postsynaptic responses in basal cells in the taste bud. Postsynaptic responses in basal cells had a threshold for activation and did not saturate with increasing doses of chemical stimulus applied to the receptor cells. We directly depolarized individual receptor cells and tested whether this would evoke postsynaptic responses in basal cells. Depolarizing receptor cells to approximately 0 mV evoked small depolarizing responses in basal cells in 16% of the experiments. The properties of these responses were consistent with their being mediated by a chemical synapse. A comparison of the responses in basal cells evoked by depolarizing single receptor cells, with responses evoked by stimulating the entire receptor cell population with KCl suggests that there is extensive synaptic convergence from receptor cells onto each basal cell. We also tested whether electrical excitation of basal cells would elicit (retrograde) synaptic responses in receptor cells. Single depolarizing pulses (up to 1 sec duration) applied to basal cells through the intracellular recording microelectrode never evoked synaptic responses in receptor cells. However, when repetitive electrical stimuli were applied to basal cells (four to six 1 sec depolarizations to approximately 0 mV every 12 sec) we observed prolonged effects on receptor cells in 11 of 23 experiments. These effects included an increase in the amplitude of receptor potentials elicited by KCI (mean +/- SD = +19 +/- 5%), an increase in membrane input resistance of receptor cells (+27 +/- 11%), and a hyperpolarization of receptor cells (3–10 mV). In control experiments, repetitive stimulation of one receptor cell never elicited such effects in another receptor cell. We investigated the possibility that serotonin (5-HT), released from basal cells, mediated the above modulatory effects on receptor cells. Bath-applied 5-HT (100 microM) mimicked the effects produced by repetitive basal cell stimulation (KCI responses increased by 23 +/- 12%; input resistance increased by 24 +/- 11%; hyperpolarization of 5–15 mV; N = 14). We conclude that basal cells release 5-HT onto adjacent taste receptor cells and that this enhances the electrotonic propagation of receptor potentials from the apical (chemosensitive) tip to the basal (synaptic) processes of receptor cells. The net effect is that activation of basal cells effectively increases the chemosensitivity of taste receptor cells.

Back to top

In this issue

The Journal of Neuroscience: 14 (6)
Journal of Neuroscience
Vol. 14, Issue 6
1 Jun 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bidirectional synaptic transmission in Necturus taste buds
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Bidirectional synaptic transmission in Necturus taste buds
DA Ewald, SD Roper
Journal of Neuroscience 1 June 1994, 14 (6) 3791-3804; DOI: 10.1523/JNEUROSCI.14-06-03791.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Bidirectional synaptic transmission in Necturus taste buds
DA Ewald, SD Roper
Journal of Neuroscience 1 June 1994, 14 (6) 3791-3804; DOI: 10.1523/JNEUROSCI.14-06-03791.1994
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.