Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Neuronal coupling in the developing mammalian retina

AA Penn, RO Wong and CJ Shatz
Journal of Neuroscience 1 June 1994, 14 (6) 3805-3815; https://doi.org/10.1523/JNEUROSCI.14-06-03805.1994
AA Penn
Department of Molecular and Cell Biology, University of California, Berkeley 94720.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RO Wong
Department of Molecular and Cell Biology, University of California, Berkeley 94720.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CJ Shatz
Department of Molecular and Cell Biology, University of California, Berkeley 94720.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

During the first 3 weeks of postnatal development in the ferret retina, cells in the ganglion cell layer spontaneously generate waves of electrical activity that travel across the retina in the absence of mature photoreceptors (Meister et al., 1991; Wong et al., 1993). Since few chemical synapses are present at the earliest stages when waves are present, we have explored whether gap junctions could act to correlate the activity of cells in the immature ganglion cell layer. Retinal ganglion cells in a living in vitro preparation from postnatal day 1 (P1) to P45 were intracellularly injected with the tracer Neurobiotin and the fluorescent dye Lucifer yellow, molecules that are known to pass through gap junctions. Lucifer yellow consistently filled only the injected cell, whereas Neurobiotin filled not only the injected cell but also passed to a constellation of neighboring cells. Coupling revealed by Neurobiotin is seen as early as P1, but, at this stage, it was not possible to identify the various morphological types of cells that were coupled. Thereafter, alpha ganglion cells showed homologous coupling to other alpha cells and to both conventionally placed and displaced amacrine cells. Likewise, gamma ganglion cells appeared coupled to other gamma cells and to amacrine cells. However, beta ganglion cells never showed tracer coupling in the neonatal or in adult retinas. The percentage of alpha and gamma cells that were coupled to other cells increased progressively with age. By the end of the third postnatal week, the pattern of Neurobiotin coupling in the ferret retina was adult-like, with virtually every injected alpha cell showing tracer coupling. Our observations suggest that intercellular junctions able to pass Neurobiotin are present in the inner plexiform layer during the period when the firing of retinal ganglion cells is highly correlated. Such junctions could contribute to synchronization of the activity of subsets of neighboring ganglion cells during development, but it cannot be the sole mediator of this activity because beta cells, which also participate in the correlated activity, showed no coupling at any stage. In addition, the continued presence of coupling in the adult retina implies that other changes in retinal circuitry are likely to contribute to the disappearance of the waves.

Back to top

In this issue

The Journal of Neuroscience: 14 (6)
Journal of Neuroscience
Vol. 14, Issue 6
1 Jun 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neuronal coupling in the developing mammalian retina
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Neuronal coupling in the developing mammalian retina
AA Penn, RO Wong, CJ Shatz
Journal of Neuroscience 1 June 1994, 14 (6) 3805-3815; DOI: 10.1523/JNEUROSCI.14-06-03805.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Neuronal coupling in the developing mammalian retina
AA Penn, RO Wong, CJ Shatz
Journal of Neuroscience 1 June 1994, 14 (6) 3805-3815; DOI: 10.1523/JNEUROSCI.14-06-03805.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.