Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Distributed aspects of the response to siphon touch in Aplysia: spread of stimulus information and cross-correlation analysis

Y Tsau, JY Wu, HP Hopp, LB Cohen, D Schiminovich and CX Falk
Journal of Neuroscience 1 July 1994, 14 (7) 4167-4184; DOI: https://doi.org/10.1523/JNEUROSCI.14-07-04167.1994
Y Tsau
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JY Wu
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HP Hopp
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LB Cohen
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Schiminovich
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CX Falk
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We examined two aspects of the response to siphon stimulation in an attempt to test the hypothesis that the Aplysia CNS functions as a distributed system. First, we estimated the number of central neurons that respond to a light touch to the siphon skin. We made voltage- sensitive dye recordings from the abdominal, pleural, pedal, and cerebral ganglia. From these recordings we estimated that 220 abdominal neurons, 110 pleural neurons, and 650 pedal neurons were affected by the light touch. Thus, the information about this mild and localized stimulus is very widely distributed within the Aplysia CNS. This result allows the possibility that the Aplysia CNS functions as a distributed system. If only a small number of neurons had responded to the touch, it would have supported the conclusion that the gill-withdrawal reflex could be generated by a small, dedicated circuit. Second, we searched for correlations between the spike times of the individual abdominal ganglion neurons. Two time scales were examined: a millisecond time scale corresponding to the duration of a fast synaptic potential and a seconds time scale corresponding to the duration of the gill-withdrawal movement. Neuron pairs with highly correlated spike activity on a millisecond time scale must be connected by (or have a common input that uses) relatively powerful, fast, excitatory synapses. We expected that this kind of synaptic interaction would be relatively rare in nervous systems that functioned in a distributed manner. Indeed, only 0.3% of the neuron pairs had correlation coefficients of 0.15 or greater. These correlations accounted for approximately 2% of the action potentials generated in response to siphon stimulation. Thus, large, fast excitatory synaptic interactions appear to be relatively unimportant. This result is consistent with the hypothesis that the abdominal ganglion functions as a distributed system. When the longer time scale was used for the cross-correlograms, a large fraction of the cell pairs had correlated activity because many neurons are activated by the stimulus. It was not possible to interpret the slow correlations in terms of actual synaptic interactions between individual neurons. Our results are consistent with the possibility that the abdominal ganglion functions in a distributed manner. However, this evaluation is indirect and thus only tentative conclusions can be drawn. Evidence from several sources suggests that the neuronal interactions for generating the Aplysia gill-withdrawal reflex are complex.

Back to top

In this issue

The Journal of Neuroscience: 14 (7)
Journal of Neuroscience
Vol. 14, Issue 7
1 Jul 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Distributed aspects of the response to siphon touch in Aplysia: spread of stimulus information and cross-correlation analysis
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Distributed aspects of the response to siphon touch in Aplysia: spread of stimulus information and cross-correlation analysis
Y Tsau, JY Wu, HP Hopp, LB Cohen, D Schiminovich, CX Falk
Journal of Neuroscience 1 July 1994, 14 (7) 4167-4184; DOI: 10.1523/JNEUROSCI.14-07-04167.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Distributed aspects of the response to siphon touch in Aplysia: spread of stimulus information and cross-correlation analysis
Y Tsau, JY Wu, HP Hopp, LB Cohen, D Schiminovich, CX Falk
Journal of Neuroscience 1 July 1994, 14 (7) 4167-4184; DOI: 10.1523/JNEUROSCI.14-07-04167.1994
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.