Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Kindling induces the long-lasting expression of a novel population of NMDA receptors in hippocampal region CA3

JE Kraus, GC Yeh, DW Bonhaus, JV Nadler and JO McNamara
Journal of Neuroscience 1 July 1994, 14 (7) 4196-4205; https://doi.org/10.1523/JNEUROSCI.14-07-04196.1994
JE Kraus
Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GC Yeh
Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DW Bonhaus
Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JV Nadler
Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JO McNamara
Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Kindling refers to a phenomenon in which repeated application of initially subconvulsive electrical stimulations produces limbic and clonic motor seizures of progressively increasing severity. Once established, the increased excitability is lifelong. Enhanced function of synapses using the NMDA subtype of glutamate receptor could contribute to the expression of the increased excitability. We previously found that CA3 pyramidal cells of hippocampus of kindled animals exhibit a selective and long-lasting (1 month) increased sensitivity to NMDA-evoked depolarization. The goal of this study was to develop a molecular explanation of the enhanced sensitivity to NMDA. We used radioligand binding studies of membranes isolated from microdissected regions of hippocampus including fascia dentata, CA3, and CA1. We also used quantitative in situ hybridization with subtype- specific riboprobes or oligonucleotides to determine whether increased expression of one or more of the genes encoding NMDA receptors was present in hippocampal granule and pyramidal cells of kindled animals. When studied 28 d after the last evoked seizure, we found that kindling induced a 2.8-fold increase in the number of binding sites for the competitive NMDA receptor antagonist 3-[(+/-)-2-(carboxypiperazine-4- yl)][1,2–3H-]propyl-1-phosphonic acid (3H-CPP). This increase was confined to region CA3 within the hippocampus. Similar, though much smaller, changes were detected 24 hr after the last evoked seizure. Surprisingly, no changes in the binding of another competitive NMDA receptor antagonist, cis-4-(phosphonomethyl)-2–3H-piperidinecarboxylate (3H-CGS-19755), were detected at either time point in any hippocampal region. Transcript levels of the NMDA receptor genes NMDAR1, NR2A, NR2B, NR2C, and NR2D and a glutamate-binding protein (GBP) were not altered by kindling. These findings demonstrate that kindling induces the expression of an NMDA receptor that is novel in that it is recognized by 3H-CPP but not by 3H-CGS-19755. The molecular basis of this novel NMDA receptor is not determined by differential expression of mRNA transcripts of known NMDA receptor genes. The direction, time course, and location of the kindling-induced increase in 3H-CPP binding suggest that this novel receptor may underlie the increased sensitivity of CA3 neurons to NMDA observed in kindled animals.

Back to top

In this issue

The Journal of Neuroscience: 14 (7)
Journal of Neuroscience
Vol. 14, Issue 7
1 Jul 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Kindling induces the long-lasting expression of a novel population of NMDA receptors in hippocampal region CA3
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Kindling induces the long-lasting expression of a novel population of NMDA receptors in hippocampal region CA3
JE Kraus, GC Yeh, DW Bonhaus, JV Nadler, JO McNamara
Journal of Neuroscience 1 July 1994, 14 (7) 4196-4205; DOI: 10.1523/JNEUROSCI.14-07-04196.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Kindling induces the long-lasting expression of a novel population of NMDA receptors in hippocampal region CA3
JE Kraus, GC Yeh, DW Bonhaus, JV Nadler, JO McNamara
Journal of Neuroscience 1 July 1994, 14 (7) 4196-4205; DOI: 10.1523/JNEUROSCI.14-07-04196.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.