Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Kappa opioids inhibit induction of long-term potentiation in the dentate gyrus of the guinea pig hippocampus

GW Terman, JJ Wagner and C Chavkin
Journal of Neuroscience 1 August 1994, 14 (8) 4740-4747; DOI: https://doi.org/10.1523/JNEUROSCI.14-08-04740.1994
GW Terman
Department of Pharmacology, University of Washington School of Medicine, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JJ Wagner
Department of Pharmacology, University of Washington School of Medicine, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Chavkin
Department of Pharmacology, University of Washington School of Medicine, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

NMDA receptor-mediated long-term potentiation (LTP) of dentate granule cell responses to perforant path stimulation was inhibited by the kappa 1 opioid receptor agonist U69,593. This inhibition was reversed stereospecifically by naloxone and blocked by the selective kappa 1 antagonist norbinaltorphimine (NBNI). NBNI, by itself, had no effect on LTP induced by threshold stimulation but significantly enhanced LTP from more prolonged stimulation. This effect of NBNI suggests that endogenous opioids can regulate LTP in the dentate gyrus. In support of this hypothesis, stimulation of dynorphin-containing fibers also blocked LTP production in an NBNI-sensitive manner. Finally, dynorphin- mediated inhibition of LTP acts primarily on mechanisms of induction rather than maintenance or expression, since dynorphin released immediately before, but not immediately after, perforant path stimulation blocked LTP. Thus, exogenous and endogenous kappa opioids can inhibit induction of long-term potentiation at the perforant path- granule cell synapse and may therefore regulate plastic changes in synaptic transmission in a brain region thought to play an important role in processes of both learning and memory and epileptogenesis.

Back to top

In this issue

The Journal of Neuroscience: 14 (8)
Journal of Neuroscience
Vol. 14, Issue 8
1 Aug 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Kappa opioids inhibit induction of long-term potentiation in the dentate gyrus of the guinea pig hippocampus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Kappa opioids inhibit induction of long-term potentiation in the dentate gyrus of the guinea pig hippocampus
GW Terman, JJ Wagner, C Chavkin
Journal of Neuroscience 1 August 1994, 14 (8) 4740-4747; DOI: 10.1523/JNEUROSCI.14-08-04740.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Kappa opioids inhibit induction of long-term potentiation in the dentate gyrus of the guinea pig hippocampus
GW Terman, JJ Wagner, C Chavkin
Journal of Neuroscience 1 August 1994, 14 (8) 4740-4747; DOI: 10.1523/JNEUROSCI.14-08-04740.1994
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.