Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Three novel types of voltage-dependent calcium channels in rat cerebellar neurons

L Forti, A Tottene, A Moretti and D Pietrobon
Journal of Neuroscience 1 September 1994, 14 (9) 5243-5256; https://doi.org/10.1523/JNEUROSCI.14-09-05243.1994
L Forti
Department of Biomedical Sciences, University of Padova, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Tottene
Department of Biomedical Sciences, University of Padova, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Moretti
Department of Biomedical Sciences, University of Padova, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Pietrobon
Department of Biomedical Sciences, University of Padova, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

With the aim of characterizing the functional and pharmacological properties of the different voltage-dependent Ca2+ channels expressed in a given type of CNS neuron, we obtained single Ca2+ channel recordings from rat cerebellar granule cells in primary culture. Our data show that three novel classes of voltage-dependent Ca2+ channels are coexpressed in cerebellar granule cells. They are pharmacologically distinct from dihydropyridine-sensitive L-type and omega-conotoxin- sensitive N-type channels, and their functional properties are different from those of P- and T-type channels. The three novel 21 pS G1-, 15 pS G2-, and 20 pS G3-type Ca2+ channels have similar inactivation properties. They show complete steady-state inactivation at -40 mV and their single-channel average currents have both sustained and decaying components. They differ in activation threshold (-40 mV for G2, -30 mV for G3, and -10 mV for G1, with 90 mM Ba2+ as charge carrier), mean open time (1.2 msec for G2, 1 msec for G3, 0.8 msec for G1), and single-channel currents (at 0 mV: 0.5 pA for G2, 0.8 pA for G3, and 1.4 pA for G1). Together with the previously characterized multiple L-type Ca2+ channels (Forti and Pietrobon, 1993), G1-, G2-, and G3-type channels constitute the large majority of Ca2+ channels of cerebellar granule cells in culture. The low activation threshold of G2- type channels and their inactivation properties suggest that they might be native counterparts of the recently expressed rat brain clone rbE-II (Soong et al., 1993).

Back to top

In this issue

The Journal of Neuroscience: 14 (9)
Journal of Neuroscience
Vol. 14, Issue 9
1 Sep 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Three novel types of voltage-dependent calcium channels in rat cerebellar neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Three novel types of voltage-dependent calcium channels in rat cerebellar neurons
L Forti, A Tottene, A Moretti, D Pietrobon
Journal of Neuroscience 1 September 1994, 14 (9) 5243-5256; DOI: 10.1523/JNEUROSCI.14-09-05243.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Three novel types of voltage-dependent calcium channels in rat cerebellar neurons
L Forti, A Tottene, A Moretti, D Pietrobon
Journal of Neuroscience 1 September 1994, 14 (9) 5243-5256; DOI: 10.1523/JNEUROSCI.14-09-05243.1994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.