Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus

B Stein-Behrens, MP Mattson, I Chang, M Yeh and R Sapolsky
Journal of Neuroscience 1 September 1994, 14 (9) 5373-5380; DOI: https://doi.org/10.1523/JNEUROSCI.14-09-05373.1994
B Stein-Behrens
Department of Biological Sciences, Stanford University, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MP Mattson
Department of Biological Sciences, Stanford University, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I Chang
Department of Biological Sciences, Stanford University, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Yeh
Department of Biological Sciences, Stanford University, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Sapolsky
Department of Biological Sciences, Stanford University, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Glucocorticoids (GCs), the adrenal steroids secreted during stress, endanger the hippocampus, compromising its ability to survive neurological insults. GCs probably do so by disrupting energetics in the hippocampus, thus impairing its ability to contain damaging fluxes of excitatory amino acids and calcium. Superficially, these observations suggest that stress itself should also exacerbate the toxicity of neurological insults. However, most studies have involved unphysiologic GC manipulations, limiting speculations about the endangering effects of stress. In this study, rats were infused with the excitotoxin kainic acid (KA) after either having been adrenalectomized and replaced with a range of physiologic concentrations of GCs, or having been stressed intermittently. We observed that within the CA3 region, increasing CORT concentrations exacerbated the KA-induced neuron loss, the extent of tau immunoreactivity, and of spectrin proteolysis. The transitions from low to high basal GC concentrations and from high basal to stress GC values were both associated with significant exacerbation of neuron loss and tau immunoreactivity; the extent of spectrin proteolysis was less sensitive to increments in GCs. As would be expected from these data, exposure to intermittent stress prior to KA infusion also exacerbated neuron loss, tau immunoreactivity, and spectrin proteolysis in CA3. Thus, physiological elevations of GCs, and stress itself, can exacerbate hippocampal neuron loss and the attendant degenerative markers following an excitotoxic insult. Of significance, seizure and hypoxia-ischemia provoke considerable GC stress responses, which may thus worsen the resultant damage. Furthermore, a number of neuropsychiatric disorders, as well as aging, are associated with elevated basal GC concentrations, which may endanger the hippocampus in the event of neurological insult.

Back to top

In this issue

The Journal of Neuroscience: 14 (9)
Journal of Neuroscience
Vol. 14, Issue 9
1 Sep 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus
B Stein-Behrens, MP Mattson, I Chang, M Yeh, R Sapolsky
Journal of Neuroscience 1 September 1994, 14 (9) 5373-5380; DOI: 10.1523/JNEUROSCI.14-09-05373.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus
B Stein-Behrens, MP Mattson, I Chang, M Yeh, R Sapolsky
Journal of Neuroscience 1 September 1994, 14 (9) 5373-5380; DOI: 10.1523/JNEUROSCI.14-09-05373.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.