Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects

JR Huguenard and DA Prince
Journal of Neuroscience 1 September 1994, 14 (9) 5485-5502; DOI: https://doi.org/10.1523/JNEUROSCI.14-09-05485.1994
JR Huguenard
Department of Neurology and Neurological Sciences, Stanford University Medical Center, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DA Prince
Department of Neurology and Neurological Sciences, Stanford University Medical Center, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Thalamocortical oscillations mediate both physiological and pathophysiological behaviors including sleep and generalized absence epilepsy (GA). Reciprocal intrathalamic circuitry and robust burst firing, dependent on underlying transient Ca current (IT) in thalamic neurons, support generation of such rhythms. In order to study the regulation of intrathalamic rhythm generation and the effects of GA anticonvulsants previously shown to reduce IT in acutely isolated thalamic neurons, we developed an in vitro rat thalamic slice preparation that retains sufficient intrathalamic circuitry to support evoked oscillations (range = 2.0–4.6 Hz, average = 2.7, n = 38), associated with burst firing in the thalamic reticular nucleus (nRt) and thalamic relay neurons. Extracellular stimulation of nRt evoked in relay neurons a biphasic inhibitory response with prominent GABAA and GABAB receptor-mediated components. The GABAA component was picrotoxin sensitive, outwardly rectifying and Cl- dependent, with a very negative reversal potential (-94 mV), indicating that an active extrusion mechanism exists in these cells to keep [Cl-]i < 5 mM. The GABAB component had a linear conductance, a reversal potential of -103 mV, and was quite long lasting (about 300 msec) so that rebound bursts often were generated on its decay phase, presumably leading to reexcitation of nRt through known excitatory connections. GABAB- mediated responses thus provide a timing mechanism for promoting slow intrathalamic oscillations. Reduction of IT (30–40%) by succinimides slightly increased the threshold for burst generation in relay and nRt cells, but there was little effect on either number of spikes/burst or intraburst frequency, and there were no other direct effects on other measures of cellular excitability. Intrathalamic oscillations were significantly reduced by these agents through a slight decrease in burst probability of thalamic neurons. We conclude that interactions between the intrinsic properties of thalamic neurons and intrathalamic circuitry lead to generation of slow oscillations. A similar mechanism may underlie the pathophysiological 3 Hz spike and wave EEG activity that characterizes GA. Furthermore, anti-GA drugs such as ethosuximide probably exert their action by reducing the burst-firing probability of neurons within populations of reciprocally interconnected relay and nRt neurons, thus producing a desynchronization of the thalamic circuit that prevents spike/wave generation.

Back to top

In this issue

The Journal of Neuroscience: 14 (9)
Journal of Neuroscience
Vol. 14, Issue 9
1 Sep 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects
JR Huguenard, DA Prince
Journal of Neuroscience 1 September 1994, 14 (9) 5485-5502; DOI: 10.1523/JNEUROSCI.14-09-05485.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects
JR Huguenard, DA Prince
Journal of Neuroscience 1 September 1994, 14 (9) 5485-5502; DOI: 10.1523/JNEUROSCI.14-09-05485.1994
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.