Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth

SM Strittmatter, M Igarashi and MC Fishman
Journal of Neuroscience 1 September 1994, 14 (9) 5503-5513; DOI: https://doi.org/10.1523/JNEUROSCI.14-09-05503.1994
SM Strittmatter
Developmental Biology Laboratory, Massachusetts General Hospital, Charlestown 02129.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Igarashi
Developmental Biology Laboratory, Massachusetts General Hospital, Charlestown 02129.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MC Fishman
Developmental Biology Laboratory, Massachusetts General Hospital, Charlestown 02129.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The neuronal growth-associated protein GAP-43 is expressed maximally during development and regeneration, and is enriched at the cytosolic surface of the growth cone membrane. GAP-43 can activate the GTP- binding protein G(o) which is also a major component of the growth cone membrane. These findings have led to the hypothesis that GAP-43 might modulate neurite outgrowth by altering G-protein activity. Here we define the sequence requirements for GAP-43 amino terminal peptide stimulation of G(o), and test these peptides as potential modulators of neurite outgrowth. The first 10 amino acids of GAP-43, Met-Leu-Cys-Cys- Met-Arg-Arg-Thr-Lys-Gln, stimulate G(o). Substitutions at particular residues reveal that cys3, cys4, arg6, and lys9 are critical, but arg7 is not. Both the GAP-43(1–10) peptide and the G-protein-activating peptide mastoparan induce growth cone collapse and inhibit neurite extension from embryonic chick dorsal root ganglion and retinal neurons. This is likely to be mediated by G-proteins: pertussis toxin blocks the inhibition, and mutant peptides that do not activate G(o) do not alter outgrowth. In contrast to the case with embryonic chick dorsal root ganglion cells, neurite outgrowth from N1E-115 neuroblastoma cells is stimulated by GAP-43(1–10). This is probably also a G-protein-mediated event because it is blocked by pertussis toxin, because the sequence requirements match those for G(o) stimulation, and because mastoparan stimulates outgrowth from these cells. The longer GAP-43(1–25) peptide does not alter neurite outgrowth unless the cells are permeabilized, suggesting an intracellular site of action. These data identify a novel set of compounds that modulate neurite outgrowth, and also support the notion that GAP-43 can alter neurite extension by modulating pertussis toxin-sensitive G-protein activity in the growth cone.

Back to top

In this issue

The Journal of Neuroscience: 14 (9)
Journal of Neuroscience
Vol. 14, Issue 9
1 Sep 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth
SM Strittmatter, M Igarashi, MC Fishman
Journal of Neuroscience 1 September 1994, 14 (9) 5503-5513; DOI: 10.1523/JNEUROSCI.14-09-05503.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth
SM Strittmatter, M Igarashi, MC Fishman
Journal of Neuroscience 1 September 1994, 14 (9) 5503-5513; DOI: 10.1523/JNEUROSCI.14-09-05503.1994
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.