Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Regenerating muscle fibers induce directional sprouting from nearby nerve terminals: studies in living mice

P van Mier and JW Lichtman
Journal of Neuroscience 1 September 1994, 14 (9) 5672-5686; DOI: https://doi.org/10.1523/JNEUROSCI.14-09-05672.1994
P van Mier
Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JW Lichtman
Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The principal aim of this work was to better understand how regenerating muscle fibers become innervated in adult animals. To induce muscle regeneration, individual identified muscle fibers in a mouse were damaged with a laser focused through a microscope. The muscle fiber that degenerated and the muscle fiber that was formed in its place were followed by viewing the same site repeatedly over a period of 2 d to 40 weeks. Commonly, the nerve terminal innervating the irradiated muscle fiber partially retracted during muscle fiber degeneration, and then sprouted to innervate the regenerating muscle fiber at the same site it had previously innervated the muscle fiber that was damaged. During the early phase of muscle regeneration we also observed sprouts originating from nerve terminals on adjacent muscle fibers. The new nerve growth was a response to the regenerating muscle fiber rather than to the degenerated fiber it replaced because repeated damage of the same site every 2–3 d over a 10 d period (to prevent regeneration) did not cause any sprouting. The direction of the sprouts on adjacent muscle fibers showed a bias toward the regenerating muscle fiber, although they avoided the region occupied by the original nerve terminal. Forty percent of the sprouts managed to reach the regenerated fiber. Nonetheless, by 11 d after muscle fiber damage, all sprouts had regressed, leaving the new fiber innervated by the same motor axon that innervated the fiber that was damaged. On the other hand, when the overlying nerve terminal as well as the muscle fiber was damaged, the sprouts from nearby muscle fibers were both more numerous and more stable, and in five cases we observed two or more new synaptic junctions on the regenerating fiber originating from different axons. In one case we witnessed a protracted competition between the original motor axon as it sprouted back and the sprouts from nearby junctions for sole innervation of the regenerate. Ultimately, the surviving sprouts myelinated and became the permanent and exclusive input to the new fiber. These results indicate that regenerating muscle fibers emit a signal that induces directional sprouting from nearby undamaged nerve terminals. Reinnervation of the regenerating muscle fiber by one axon apparently prevents the maintenance of such neurites. Because the process of muscle regeneration shares many features in common with myogenesis during embryonic development, it is likely that developing muscle fibers present an analogous stimulus to ingrowing motor axons.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 14 (9)
Journal of Neuroscience
Vol. 14, Issue 9
1 Sep 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regenerating muscle fibers induce directional sprouting from nearby nerve terminals: studies in living mice
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Regenerating muscle fibers induce directional sprouting from nearby nerve terminals: studies in living mice
P van Mier, JW Lichtman
Journal of Neuroscience 1 September 1994, 14 (9) 5672-5686; DOI: 10.1523/JNEUROSCI.14-09-05672.1994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Regenerating muscle fibers induce directional sprouting from nearby nerve terminals: studies in living mice
P van Mier, JW Lichtman
Journal of Neuroscience 1 September 1994, 14 (9) 5672-5686; DOI: 10.1523/JNEUROSCI.14-09-05672.1994
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.