Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells

PE Sharp, HT Blair, D Etkin and DB Tzanetos
Journal of Neuroscience 1 January 1995, 15 (1) 173-189; DOI: https://doi.org/10.1523/JNEUROSCI.15-01-00173.1995
PE Sharp
Department of Psychology, Yale University, New Haven, Connecticut 06520– 8205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HT Blair
Department of Psychology, Yale University, New Haven, Connecticut 06520– 8205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Etkin
Department of Psychology, Yale University, New Haven, Connecticut 06520– 8205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DB Tzanetos
Department of Psychology, Yale University, New Haven, Connecticut 06520– 8205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Hippocampal place cells show location-specific firing as animals locomote in an environment. A possible explanation for these place fields is that each cell is simply driven by environmental sensory inputs available in its field. This cannot provide the full explanation, however, since cells can maintain stable place fields even in the absence of reliable environmental orienting cues. This suggests the cells are also influenced by movement-related information, since this is the only available, ongoing indicator of current location when external orienting cues are not present. Two candidates for the movement-related information are vestibular activation, and visual motion. To test for these influences, place cells were recorded as animals locomoted in a cylindrical apparatus that was made so that its wall (painted with vertical black and white stripes) and floor could be independently rotated, to provide visual motion and vestibular inputs, respectively. The results showed that both these inputs could influence place fields. Sometimes they caused a predictable locational shift, so that the field rotated its location on the apparatus floor in a way that was compatible with the movement indicated by the vestibular and/or visual motion input. This updating was most reliably obtained when the two inputs were presented in combination. In other cases, the apparatus rotations caused unpredictable changes in firing characteristics, so that cells either stopped firing, or developed place fields that were altered in overall size, shape, and eccentricity. Interestingly, the probability of these changes increased with experience with the rotational manipulations, suggesting a learned component.

Back to top

In this issue

The Journal of Neuroscience: 15 (1)
Journal of Neuroscience
Vol. 15, Issue 1
1 Jan 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells
PE Sharp, HT Blair, D Etkin, DB Tzanetos
Journal of Neuroscience 1 January 1995, 15 (1) 173-189; DOI: 10.1523/JNEUROSCI.15-01-00173.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells
PE Sharp, HT Blair, D Etkin, DB Tzanetos
Journal of Neuroscience 1 January 1995, 15 (1) 173-189; DOI: 10.1523/JNEUROSCI.15-01-00173.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.