Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms

A Ylinen, A Bragin, Z Nadasdy, G Jando, I Szabo, A Sik and G Buzsaki
Journal of Neuroscience 1 January 1995, 15 (1) 30-46; DOI: https://doi.org/10.1523/JNEUROSCI.15-01-00030.1995
A Ylinen
Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, Newark 07102.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Bragin
Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, Newark 07102.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z Nadasdy
Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, Newark 07102.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Jando
Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, Newark 07102.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I Szabo
Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, Newark 07102.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Sik
Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, Newark 07102.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Buzsaki
Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, Newark 07102.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Sharp wave bursts, induced by a cooperative discharge of CA3 pyramidal cells, are the most synchronous physiological pattern in the hippocampus. In conjunction with sharp wave bursts, CA1 pyramidal cells display a high-frequency (200 Hz) network oscillation (ripple). In the present study extracellular field and unit activity was recorded simultaneously from 16 closely spaces sites in the awake rat and the intracellular activity of CA1 pyramidal cells during the network oscillation was studied under anesthesia. Current source density analysis of the high-frequency oscillation revealed circumscribed sinks and sources in the vicinity of the pyramidal layer. Single pyramidal cells discharged at a low frequency but were phase locked to the negative peak of the locally derived field oscillation. Approximately 10% of the simultaneously recorded pyramidal cells fired during a given oscillatory event. Putative interneurons increased their discharge rates during the field ripples severalfold and often maintained a 200 Hz frequency during the oscillatory event. Under urethane and ketamine anesthesia the frequency of ripples was slower (100–120 Hz) than in the awake rat (180–200 Hz). Halothane anesthesia prevented the occurrence of high-frequency field oscillations in the CA1 region. Both the amplitude (1–4 mV) and phase of the intracellular ripple, but not its frequency, were voltage dependent. The amplitude of intracellular ripple was smallest between -70 and -80 mV. The phase of intracellular oscillation relative to the extracellular ripple reversed when the membrane was hyperpolarized more than -80 mV. A histologically verified CA1 basket cell increased its firing rate during the network oscillation and discharged at the frequency of the extracellular ripple. These findings indicate that the intracellularly recorded fast oscillatory rhythm is not solely dependent on membrane currents intrinsic to the CA1 pyramidal cells but it is a network driven phenomenon dependent upon the participation of inhibitory interneurons. We hypothesize that fast field oscillation (200 Hz) in the CA1 region reflects summed IPSPs in pyramidal cells as a result of high-frequency barrage of interneurons. The sharp wave associated synchronous discharge of pyramidal cells in the millisecond range can exert a powerful influence on retrohippocampal targets and may facilitate the transfer of transiently stored memory traces from the hippocampus to the entorhinal cortex.

Back to top

In this issue

The Journal of Neuroscience: 15 (1)
Journal of Neuroscience
Vol. 15, Issue 1
1 Jan 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms
A Ylinen, A Bragin, Z Nadasdy, G Jando, I Szabo, A Sik, G Buzsaki
Journal of Neuroscience 1 January 1995, 15 (1) 30-46; DOI: 10.1523/JNEUROSCI.15-01-00030.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms
A Ylinen, A Bragin, Z Nadasdy, G Jando, I Szabo, A Sik, G Buzsaki
Journal of Neuroscience 1 January 1995, 15 (1) 30-46; DOI: 10.1523/JNEUROSCI.15-01-00030.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.