Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Transforming growth factor-beta blocks myelination but not ensheathment of axons by Schwann cells in vitro

V Guenard, LA Gwynn and PM Wood
Journal of Neuroscience 1 January 1995, 15 (1) 419-428; DOI: https://doi.org/10.1523/JNEUROSCI.15-01-00419.1995
V Guenard
Miami Project to Cure Paralysis, University of Miami School of Medicine, Florida 33136.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LA Gwynn
Miami Project to Cure Paralysis, University of Miami School of Medicine, Florida 33136.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PM Wood
Miami Project to Cure Paralysis, University of Miami School of Medicine, Florida 33136.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Mechanisms regulating Schwann cell differentiation into a myelinating or a mature nonmyelinating phenotype during development are poorly understood. Humoral factors such as members of the transforming growth factor-beta (TGF-beta) family, which are found in the developing and adult mammalian nervous system and are known to affect cell differentiation, could be involved. We tested the effects of TGF-beta isoforms on the ensheathment and myelination of dorsal root ganglion (DRG) neurons by Schwann cells in vitro. Rat embryonic DRG neurons and Schwann cells from the sciatic nerve were isolated, purified, and recombined. In serum-free conditions, TGF-beta blocked both Schwann cell myelination and the expression of the myelin-related molecules galactocerebroside, P0, myelin-associated glycoprotein, and myelin basic protein. In contrast, the expression of molecules characteristic of mature nonmyelinating Schwann cells, including neural-cell adhesion molecule, L1, and nerve growth factor receptor, was maintained when compared to Schwann cells in nondifferentiated cultures. Notably, the expression of glial fibrillary acidic protein, which is expressed only in mature nonmyelinating Schwann cells in vivo, was increased 10-fold in our cultures by TGF-beta. Electron microscopic analysis indicated that in the presence of TGF-beta, basal lamina deposition by Schwann cells was slightly increased. Most importantly, many axons in TGF-beta- treated cultures received ensheathment typical of mature nonmyelinated nerves. These effects of TGF-beta were partially reversed by specific neutralizing anti-TGF-beta antibodies. We interpret these results as evidence that TGF-beta regulates Schwann cell differentiation in vitro by blocking the expression of the myelinating phenotype and promoting the development of the nonmyelinating phenotype.

Back to top

In this issue

The Journal of Neuroscience: 15 (1)
Journal of Neuroscience
Vol. 15, Issue 1
1 Jan 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Transforming growth factor-beta blocks myelination but not ensheathment of axons by Schwann cells in vitro
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Transforming growth factor-beta blocks myelination but not ensheathment of axons by Schwann cells in vitro
V Guenard, LA Gwynn, PM Wood
Journal of Neuroscience 1 January 1995, 15 (1) 419-428; DOI: 10.1523/JNEUROSCI.15-01-00419.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Transforming growth factor-beta blocks myelination but not ensheathment of axons by Schwann cells in vitro
V Guenard, LA Gwynn, PM Wood
Journal of Neuroscience 1 January 1995, 15 (1) 419-428; DOI: 10.1523/JNEUROSCI.15-01-00419.1995
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.