Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats

SR Bodnoff, AG Humphreys, JC Lehman, DM Diamond, GM Rose and MJ Meaney
Journal of Neuroscience 1 January 1995, 15 (1) 61-69; https://doi.org/10.1523/JNEUROSCI.15-01-00061.1995
SR Bodnoff
Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AG Humphreys
Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JC Lehman
Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DM Diamond
Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GM Rose
Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MJ Meaney
Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Prolonged treatment with stress levels of corticosterone has been reported to produce changes in the hippocampus. In the experiments reported here, we examined for functional and morphological consequences of this treatment. First, young adult or mid-aged male Long-Evans rats were treated for either 1 or 3 months with corticosterone, at a dose sufficient to mimic the elevated hormone levels observed following exposure to mild stress. Two weeks following the termination of treatment, the animals were tested in the Morris water maze to assess spatial learning. No behavioral deficits were observed after 1 month of treatment. A 3 month treatment period also had no effect in young rats, but produced a learning impairment in the mid-aged rats. We then examined whether the effect of elevated corticosterone in mid-aged animals could be produced by a physiological stressor. Mid-aged rats were maintained for 6 months under conditions of low or high social stress. Six months of exposure to high social stress produced significant spatial learning impairments in the Morris water maze. These effects were absent in high social stress animals that had been previously adrenalectomized (with low-level corticosterone replacement), suggesting that elevated glucocorticoid levels mediate the effects of stress on spatial memory in older animals. In a final experiment, mid-aged rats were treated with corticosterone at levels that mimicked those naturally occurring at the diurnal peak (medium-B: 12–17 micrograms/dl) or in response to stress (high-B: 25–32 micrograms/dl). Only rats exposed to high levels of corticosterone demonstrated impaired performance in the Morris water maze.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 15 (1)
Journal of Neuroscience
Vol. 15, Issue 1
1 Jan 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats
SR Bodnoff, AG Humphreys, JC Lehman, DM Diamond, GM Rose, MJ Meaney
Journal of Neuroscience 1 January 1995, 15 (1) 61-69; DOI: 10.1523/JNEUROSCI.15-01-00061.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats
SR Bodnoff, AG Humphreys, JC Lehman, DM Diamond, GM Rose, MJ Meaney
Journal of Neuroscience 1 January 1995, 15 (1) 61-69; DOI: 10.1523/JNEUROSCI.15-01-00061.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.