Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Interneurons and inhibition in the dentate gyrus of the rat in vivo

PS Buckmaster and PA Schwartzkroin
Journal of Neuroscience 1 January 1995, 15 (1) 774-789; DOI: https://doi.org/10.1523/JNEUROSCI.15-01-00774.1995
PS Buckmaster
Department of Neurological Surgery, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PA Schwartzkroin
Department of Neurological Surgery, University of Washington, Seattle 98195.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Inhibitory cells are critically involved in shaping normal hippocampal function and are thought to be important elements in the development of hippocampal pathologies. However, there is relatively little information about the extent and pattern of axonal arborization of hippocampal interneurons and, therefore, about the sphere of influence of these cells. What we do know about these cells is based largely on in vitro slice studies, in which interneuronal interactions may be severely attenuated. The present study was carried out to provide a more realistic picture of interneuron influence. Intracellular recordings were obtained from dentate interneurons in the intact brain of anesthetized rats, and cells were intracellularly labeled with biocytin. The axonal arbors of two classes of dentate interneurons were traced through the hippocampus; each was found to extend long distances (up to half of the total septotemporal length of the hippocampus) perpendicular to the hippocampal lamellae and to target preferential strata. These results suggest that dentate interneurons have far- reaching effects on target cells in distant hippocampal lamellae. One implication of this finding is that dentate neurons should receive more inhibitory synaptic drive in vivo than in slice preparations, in which many inhibitory axon collaterals are amputated. Synaptic responses to perforant path stimulation were examined in granule cells, mossy cells, and CA3 pyramidal cells in vivo, for comparison with previously published results from hippocampal slice studies. In vivo, all cell types showed excitatory synaptic responses that were brief and limited by robust IPSPs that were larger in amplitude and conductance than responses to comparable stimuli recorded in vitro. This difference could not be explained by a change in the intrinsic physiological properties of the cells in the slice preparation, because those parameters were similar in vivo and in vitro. We conclude that dentate gyrus inhibitory interneurons can affect the excitability of neurons in distant areas of the hippocampus, and that these distant influences cannot be appreciated in conventional in vitro preparations.

Back to top

In this issue

The Journal of Neuroscience: 15 (1)
Journal of Neuroscience
Vol. 15, Issue 1
1 Jan 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Interneurons and inhibition in the dentate gyrus of the rat in vivo
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Interneurons and inhibition in the dentate gyrus of the rat in vivo
PS Buckmaster, PA Schwartzkroin
Journal of Neuroscience 1 January 1995, 15 (1) 774-789; DOI: 10.1523/JNEUROSCI.15-01-00774.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Interneurons and inhibition in the dentate gyrus of the rat in vivo
PS Buckmaster, PA Schwartzkroin
Journal of Neuroscience 1 January 1995, 15 (1) 774-789; DOI: 10.1523/JNEUROSCI.15-01-00774.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.