Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

CNS myelin and oligodendrocytes of the Xenopus spinal cord--but not optic nerve--are nonpermissive for axon growth

DM Lang, BP Rubin, ME Schwab and CA Stuermer
Journal of Neuroscience 1 January 1995, 15 (1) 99-109; DOI: https://doi.org/10.1523/JNEUROSCI.15-01-00099.1995
DM Lang
University of Konstanz, Faculty of Biology, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BP Rubin
University of Konstanz, Faculty of Biology, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ME Schwab
University of Konstanz, Faculty of Biology, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CA Stuermer
University of Konstanz, Faculty of Biology, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In vitro assays reveal that myelin and oligodendrocytes of the Xenopus spinal cord (SC) are--unlike corresponding components of the optic nerve/tectum (OT)--nonpermissive substrates for regenerating retinal axons. The number of growth cones that crossed SC oligodendrocytes is low but increases significantly (four- to fivefold) in the presence of the antibody IN-1, in which case their numbers are similar to the number of growth cones (approximately 60%) that cross OT oligodendrocytes with or without IN-1. IN-1 neutralizes neurite growth inhibitors (NI) of rat CNS myelin, indicating that mammalian-like NI are associated with Xenopus SC myelin and oligodendrocytes but not with the OT. IN-1 immunocytochemistry on sections supports this view: SC myelin was stained with IN-1, whereas OT myelin and PNS myelin were not.

Back to top

In this issue

The Journal of Neuroscience: 15 (1)
Journal of Neuroscience
Vol. 15, Issue 1
1 Jan 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
CNS myelin and oligodendrocytes of the Xenopus spinal cord--but not optic nerve--are nonpermissive for axon growth
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
CNS myelin and oligodendrocytes of the Xenopus spinal cord--but not optic nerve--are nonpermissive for axon growth
DM Lang, BP Rubin, ME Schwab, CA Stuermer
Journal of Neuroscience 1 January 1995, 15 (1) 99-109; DOI: 10.1523/JNEUROSCI.15-01-00099.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
CNS myelin and oligodendrocytes of the Xenopus spinal cord--but not optic nerve--are nonpermissive for axon growth
DM Lang, BP Rubin, ME Schwab, CA Stuermer
Journal of Neuroscience 1 January 1995, 15 (1) 99-109; DOI: 10.1523/JNEUROSCI.15-01-00099.1995
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.