Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit

C Baunez, A Nieoullon and M Amalric
Journal of Neuroscience 1 October 1995, 15 (10) 6531-6541; DOI: https://doi.org/10.1523/JNEUROSCI.15-10-06531.1995
C Baunez
Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, CNRS, Marseille, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Nieoullon
Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, CNRS, Marseille, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Amalric
Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, CNRS, Marseille, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Lesions of the subthalamic nucleus (STN) have been found to reduce the severe akinetic motor symptom produced in animal models of Parkinson's disease, such as in monkeys treated with 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) or in monoamine-depleted rats. However, little is known about the effect of STN exclusion on subtle motor deficits induced by moderate dopaminergic lesions in complex motor tasks. The present study was thus performed on rats trained in a reaction time (RT) task known to be extremely sensitive to variations of dopamine transmission in the striatum. Animals were trained to release a lever after the onset of a visual stimulus within a time limit to obtain a food reward. Discrete dopamine depletion produced by infusing the neurotoxin 6-hydroxydopamine (6-OHDA) bilaterally into the dorsal part of the striatum, produced motor initiation deficits which were revealed by an increase in the number of delayed responses (lever release after the time limit) and a lengthening of RTs. In contrast, bilateral excitotoxic lesion of the STN with ibotenic acid induced severe behavioral deficits which were opposite to those produced by the dopaminergic lesion, as shown by an increase in the number of premature responses (lever release before the onset of the visual stimulus) and a decrease of RTs. Surprisingly, the performance of the animals bearing a double lesion (striatal dopaminergic lesion followed 14 d later by STN ibotenic lesion) was still impaired 40 d after the ibotenic lesion. As expected, the 6-OHDA-induced motor initiation deficits were reversed by a subsequent STN lesion. However, the dramatic increase of premature responses contributing to major behavioral deficits induced by the STN lesion remained unchanged. Thus, the bilateral lesion of the STN was found to alleviate the motor deficits in this model of parkinsonism, but essentially produced over time, long lasting deficits that might be related to dyskinesia or cognitive impairment. The present results strongly support the recent concept of a predominant control of the STN on basal ganglia output structures.

Back to top

In this issue

The Journal of Neuroscience: 15 (10)
Journal of Neuroscience
Vol. 15, Issue 10
1 Oct 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit
C Baunez, A Nieoullon, M Amalric
Journal of Neuroscience 1 October 1995, 15 (10) 6531-6541; DOI: 10.1523/JNEUROSCI.15-10-06531.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit
C Baunez, A Nieoullon, M Amalric
Journal of Neuroscience 1 October 1995, 15 (10) 6531-6541; DOI: 10.1523/JNEUROSCI.15-10-06531.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.