Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Glutamate-gated inhibitory currents of central pattern generator neurons in the lobster stomatogastric ganglion

TA Cleland and AI Selverston
Journal of Neuroscience 1 October 1995, 15 (10) 6631-6639; DOI: https://doi.org/10.1523/JNEUROSCI.15-10-06631.1995
TA Cleland
Biology Department, University of California at San Diego, La Jolla 92093–0357, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AI Selverston
Biology Department, University of California at San Diego, La Jolla 92093–0357, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Inhibitory glutamatergic neurotransmission is an elemental “building block#x201D; of the oscillatory networks within the crustacean stomatogastric ganglion (STG). This study constitutes the initial characterization of glutamatergic currents in isolated STG neurons in primary culture. Superfusion of 1 mM L-glutamate evoked a current response in 45 of 65 neurons examined. The evoked current incorporated two kinetically distinct components in variable proportion: a fast desensitizing component and a slower component. The current was mediated by an outwardly rectifying conductance increase and reversed at -48.8 +/- 5.3 mV. Reducing the external chloride concentration by 50% deflected the glutamate equilibrium potential (Eglu) by +14 mV, while increasing external potassium threefold shifted Eglu by up to +6 mV. Ibotenic acid fully activated both components of the glutamate response. Saturating concentrations of glutamate completely occluded neuronal responses to ibotenic acid, indicating that ibotenic acid was activating the same receptor(s) as glutamate. Millimolar concentrations of quisqualic acid, kainate, AMPA, and NMDA each failed to evoke any response. Picrotoxin (10(-4)M) completely blocked the glutamate response. Niflumic acid (100 microM) blocked > 80% of the desensitizing component and congruent to 50% of the sustained component. Reduction or elimination of extracellular calcium did not abolish the response. This study extends the ionic and pharmacological analysis of glutamatergic conductances in STG neurons. The currents described are consistent with glutamatergic inhibitory synaptic and agonist-evoked responses previously described in situ. We discuss their pharmacology, ionic mechanisms, and functional significance.

Back to top

In this issue

The Journal of Neuroscience: 15 (10)
Journal of Neuroscience
Vol. 15, Issue 10
1 Oct 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Glutamate-gated inhibitory currents of central pattern generator neurons in the lobster stomatogastric ganglion
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Glutamate-gated inhibitory currents of central pattern generator neurons in the lobster stomatogastric ganglion
TA Cleland, AI Selverston
Journal of Neuroscience 1 October 1995, 15 (10) 6631-6639; DOI: 10.1523/JNEUROSCI.15-10-06631.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Glutamate-gated inhibitory currents of central pattern generator neurons in the lobster stomatogastric ganglion
TA Cleland, AI Selverston
Journal of Neuroscience 1 October 1995, 15 (10) 6631-6639; DOI: 10.1523/JNEUROSCI.15-10-06631.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.