Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats

K Kandler and E Friauf
Journal of Neuroscience 1 October 1995, 15 (10) 6890-6904; DOI: https://doi.org/10.1523/JNEUROSCI.15-10-06890.1995
K Kandler
Department of Animal Physiology, University of Tubingen, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Friauf
Department of Animal Physiology, University of Tubingen, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In contrast to our knowledge about the anatomical development of the mammalian central auditory system, the development of its physiological properties is still poorly understood. In order to better understand the physiological properties of the developing mammalian auditory brainstem, we made intracellular recordings in brainstem slices from perinatal rats to examine synaptic transmission in the superior olivary complex, the first binaural station in the ascending auditory pathway. We concentrated on neurons in the lateral superior olive (LSO), which in adults, are excited from the ipsilateral side and inhibited from the contralateral side. Already at embryonic day (E) 18, when axon collaterals begin to invade the LSO anlage, synaptic potentials could be evoked from ipsilateral, as well as from contralateral inputs. Ipsilaterally elicited PSPs were always depolarizing, regardless of age. They had a positive reversal potential and could be completely blocked by the non-NMDA glutamate receptor antagonist CNQX. In contrast, contralaterally elicited PSPs were depolarizing from E18-P4, yet they turned into “adult-like,#x201D; hyperpolarizing PSPs after P8. Their reversal potential shifted dramatically from -21.6 +/- 17.7 mV (E18-P0) to -73.0 +/- 7.1 mV (P10). Regardless of their polarity, contralaterally elicited PSPs were reversibly blocked by the glycine receptor antagonist strychnine. Bath application of glycine and its agonist beta-alanine further confirmed the transitory depolarizing action of glycine in the auditory brainstem. Since the transient excitatory behavior of glycine occurs during a period during which glycinergic synaptic connections in the LSO are refined by activity- dependent mechanisms, glycinergic excitation might be a mechanism by which synaptic rearrangement in the contralateral inhibitory pathway is accomplished.

Back to top

In this issue

The Journal of Neuroscience: 15 (10)
Journal of Neuroscience
Vol. 15, Issue 10
1 Oct 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats
K Kandler, E Friauf
Journal of Neuroscience 1 October 1995, 15 (10) 6890-6904; DOI: 10.1523/JNEUROSCI.15-10-06890.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats
K Kandler, E Friauf
Journal of Neuroscience 1 October 1995, 15 (10) 6890-6904; DOI: 10.1523/JNEUROSCI.15-10-06890.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.