Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Impaired peripheral nerve regeneration in a mutant strain of mice (Enr) with a Schwann cell defect

EM Rath, D Kelly, TW Bouldin and B Popko
Journal of Neuroscience 1 November 1995, 15 (11) 7226-7237; DOI: https://doi.org/10.1523/JNEUROSCI.15-11-07226.1995
EM Rath
Brain and Development Research Center, University of North Carolina, Chapel Hill 27599–7250, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Kelly
Brain and Development Research Center, University of North Carolina, Chapel Hill 27599–7250, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TW Bouldin
Brain and Development Research Center, University of North Carolina, Chapel Hill 27599–7250, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Popko
Brain and Development Research Center, University of North Carolina, Chapel Hill 27599–7250, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Schwann cell-axon interactions in the development, maintenance, and regeneration of the normal peripheral nervous system are complex. A previously described transgene-induced insertional mutation (BPFD#36), now referred to as Enervated (Enr), results in disrupted Schwann cell- axon interactions. In this report, after a crush or transection injury to Enr peripheral nerves, we demonstrate impaired nerve regeneration. There are fewer myelinated fibers per mm2 and thinner myelin sheaths surrounding regenerating axons in the nerves of homozygous mutant mice compared to wild type mice at 28 d after crush injury to the sciatic nerve. Abnormal Schwann cell-axon interactions remain in Enr/Enr animals as evidenced by the relatively frequent ultrastructural finding of unmyelinated large diameter axons in the regenerating nerves. Additionally, nerve graft experiments indicate that the impairment in regeneration is due to a Schwann cell defect. Morphologic and morphometric findings in conjunction with molecular analysis of regenerating nerves suggest that the Enr defect causes a disruption in the ability of “early ” Schwann cells to differentiate to a more mature phenotype. In mutant homozygous and wild type nerves at 7 d after crush injury there are similar levels of mRNA for the low-affinity nerve growth factor receptor, but in the mutant homozygous regenerating nerves there is 11-fold less mRNA for glial fibrillary acidic protein, a more mature phenotypic marker of Schwann cells. This Schwann cell differentiation defect likely accounts for both the peripheral neuropathy and impaired nerve regeneration observed in Enr mice.

Back to top

In this issue

The Journal of Neuroscience: 15 (11)
Journal of Neuroscience
Vol. 15, Issue 11
1 Nov 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Impaired peripheral nerve regeneration in a mutant strain of mice (Enr) with a Schwann cell defect
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Impaired peripheral nerve regeneration in a mutant strain of mice (Enr) with a Schwann cell defect
EM Rath, D Kelly, TW Bouldin, B Popko
Journal of Neuroscience 1 November 1995, 15 (11) 7226-7237; DOI: 10.1523/JNEUROSCI.15-11-07226.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Impaired peripheral nerve regeneration in a mutant strain of mice (Enr) with a Schwann cell defect
EM Rath, D Kelly, TW Bouldin, B Popko
Journal of Neuroscience 1 November 1995, 15 (11) 7226-7237; DOI: 10.1523/JNEUROSCI.15-11-07226.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.