Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
PreviousNext
Articles

Substance P induced by peripheral nerve injury in primary afferent sensory neurons and its effect on dorsal column nucleus neurons

K Noguchi, Y Kawai, T Fukuoka, E Senba and K Miki
Journal of Neuroscience 1 November 1995, 15 (11) 7633-7643; DOI: https://doi.org/10.1523/JNEUROSCI.15-11-07633.1995
K Noguchi
Department of Anatomy and Neuroscience, Hyogo College of Medicine, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Kawai
Department of Anatomy and Neuroscience, Hyogo College of Medicine, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Fukuoka
Department of Anatomy and Neuroscience, Hyogo College of Medicine, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Senba
Department of Anatomy and Neuroscience, Hyogo College of Medicine, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Miki
Department of Anatomy and Neuroscience, Hyogo College of Medicine, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Using in situ hybridization and the retrograde tracer, Fluorogold, we examined the expression of preprotachykinin (PPT) mRNA in the rat dorsal root ganglion neurons projecting to the gracile nucleus. Seven days after unilateral sciatic nerve transection, some medium- to large- sized neurons in the rat dorsal root ganglia projecting to the gracile nucleus express PPT mRNA, whereas very few gracile nucleus-projecting neurons on the contralateral side express PPT mRNA. Immunohistochemistry revealed an increase in substance P (SP) immunoreactivity in the gracile nucleus and large myelinated fibers in the dorsal root 2 weeks after unilateral sciatic nerve transection. The results suggest that medium to large DRG cells that project to the gracile nucleus express PPT mRNA de novo in response to peripheral nerve injury, and increased SP is transported to the gracile nucleus through large myelinated fibers. To determine whether the increased SP might affect the excitability of the gracile nucleus neurons postsynaptically, Fos expression after electrical stimulation of the injured sciatic nerve was examined. Multiple injections of the NK-1 receptor antagonist, CP-96,345, suppressed stimulus-induced Fos expression in gracile nucleus neurons including thalamic relay neurons. The inactive enantiomer, CP-96,344, had no effect on stimulus-induced Fos expression. These data indicate that the de novo synthesized SP in the lesioned primary afferent neurons may be involved in an augmentation of excitability in the dorsal column-medial lemniscus sensory pathway. This hyperexcitability may play a role in the pathogenesis of abnormal neuropathic sensations following peripheral nerve injury.

Back to top

In this issue

The Journal of Neuroscience: 15 (11)
Journal of Neuroscience
Vol. 15, Issue 11
1 Nov 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Substance P induced by peripheral nerve injury in primary afferent sensory neurons and its effect on dorsal column nucleus neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Substance P induced by peripheral nerve injury in primary afferent sensory neurons and its effect on dorsal column nucleus neurons
K Noguchi, Y Kawai, T Fukuoka, E Senba, K Miki
Journal of Neuroscience 1 November 1995, 15 (11) 7633-7643; DOI: 10.1523/JNEUROSCI.15-11-07633.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Substance P induced by peripheral nerve injury in primary afferent sensory neurons and its effect on dorsal column nucleus neurons
K Noguchi, Y Kawai, T Fukuoka, E Senba, K Miki
Journal of Neuroscience 1 November 1995, 15 (11) 7633-7643; DOI: 10.1523/JNEUROSCI.15-11-07633.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2019 by the Society for Neuroscience.
JNeurosci   Print ISSN: 0270-6474   Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.