Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Effects of delayed visual information on the rate and amount of prism adaptation in the human

S Kitazawa, T Kohno and T Uka
Journal of Neuroscience 1 November 1995, 15 (11) 7644-7652; DOI: https://doi.org/10.1523/JNEUROSCI.15-11-07644.1995
S Kitazawa
Neuroscience Section, Electrotechnical Laboratory, Tsukuba, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Kohno
Neuroscience Section, Electrotechnical Laboratory, Tsukuba, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Uka
Neuroscience Section, Electrotechnical Laboratory, Tsukuba, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Accurate reaching towards a visual target is initially disturbed when the visual field is displaced by prisms, but recovers with successive trials. To determine how the improvement depends on the visual error signals associated with the motor output, the time course of prism adaptation was studied with delayed visual information on the error. Subjects were trained to reach rapidly at a target on a tangent screen. Vision was always blocked during the movement, and allowed again only after the index finger touched the screen. One experiment consisted of three sets of 30 trials. In the first set, the subject wore no prisms and vision was allowed without delay. In the second, the visual field was displaced by prisms, and vision was available only after a delay period of 0–10,000 msec while the subjects maintained their final pointing position. Initially, the subject misreached the target by about the amount of visual displacement (60 mm). Errors decreased with trials by an amount proportional to the error in the preceding trial. The rate of decrease of error was generally largest when the delay was 0 msec, became significantly smaller when the delay was 50 msec, and showed only gradual change with longer delays. In the third set, the subject wore no prisms and vision was allowed without delay. Initial misreaching in the direction opposite to the visual displacement, reflecting the amount of adaptation in the second set, was generally largest with no delay (median of 46 mm) and significantly smaller with 50 msec and longer delays (17–33 mm).(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 15 (11)
Journal of Neuroscience
Vol. 15, Issue 11
1 Nov 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effects of delayed visual information on the rate and amount of prism adaptation in the human
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Effects of delayed visual information on the rate and amount of prism adaptation in the human
S Kitazawa, T Kohno, T Uka
Journal of Neuroscience 1 November 1995, 15 (11) 7644-7652; DOI: 10.1523/JNEUROSCI.15-11-07644.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Effects of delayed visual information on the rate and amount of prism adaptation in the human
S Kitazawa, T Kohno, T Uka
Journal of Neuroscience 1 November 1995, 15 (11) 7644-7652; DOI: 10.1523/JNEUROSCI.15-11-07644.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.