Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

A single histidine residue is essential for zinc inhibition of GABA rho 1 receptors

TL Wang, A Hackam, WB Guggino and GR Cutting
Journal of Neuroscience 1 November 1995, 15 (11) 7684-7691; DOI: https://doi.org/10.1523/JNEUROSCI.15-11-07684.1995
TL Wang
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Hackam
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WB Guggino
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GR Cutting
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The GABA rho 1 subunit, cloned from a human retina library, can form homooligomeric receptors with properties similar to GABAc receptors characterized in retinal cells. The divalent cation Zn2+, abundant in the CNS and retina, was found to inhibit GABA rho 1 receptors in a voltage-independent manner. Varying the extracellular pH from 7.4 to 5.6 significantly reduced this inhibitory effect. This pH profile suggested that one or more histidine residues might play a role in the interaction between Zn2+ and the GABA rho 1 receptor. Site-directed mutagenesis revealed that a single histidine residue (His 156) in the putative extracellular domain of rho 1 was critical for Zn2+ sensitivity. Substitution of this amino acid with tyrosine (H156Y) created a functional GABA receptor with agonist and channel properties indistinguishable from wildtype. However, the H156Y mutant was insensitive to Zn2+, even at concentrations as high as 1 mM. Mutation to aspartic acid, an amino acid that can interact with Zn2+ in other proteins, preserved sensitivity to Zn2+ but abolished the pH-dependent effect. This histidine residue is also involved in Ni2+ and Cd2+ interaction since the H156Y mutation completely suppressed the inhibition effects of these two cations. These data demonstrate that an extracellular histidine residue is critical for transition metal cation sensitivity of GABA rho 1 receptors.

Back to top

In this issue

The Journal of Neuroscience: 15 (11)
Journal of Neuroscience
Vol. 15, Issue 11
1 Nov 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A single histidine residue is essential for zinc inhibition of GABA rho 1 receptors
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A single histidine residue is essential for zinc inhibition of GABA rho 1 receptors
TL Wang, A Hackam, WB Guggino, GR Cutting
Journal of Neuroscience 1 November 1995, 15 (11) 7684-7691; DOI: 10.1523/JNEUROSCI.15-11-07684.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A single histidine residue is essential for zinc inhibition of GABA rho 1 receptors
TL Wang, A Hackam, WB Guggino, GR Cutting
Journal of Neuroscience 1 November 1995, 15 (11) 7684-7691; DOI: 10.1523/JNEUROSCI.15-11-07684.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.