Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Role of ventrolateral medulla catecholamine cells in hypothalamic neuroendocrine cell responses to systemic hypoxia

DW Smith, KM Buller and TA Day
Journal of Neuroscience 1 December 1995, 15 (12) 7979-7988; https://doi.org/10.1523/JNEUROSCI.15-12-07979.1995
DW Smith
Department of Physiology and Pharmacology, University of Queensland, Australia.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KM Buller
Department of Physiology and Pharmacology, University of Queensland, Australia.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TA Day
Department of Physiology and Pharmacology, University of Queensland, Australia.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Systemic hypoxia stimulates the release of vasopressin (VP) and adrenocorticotropin hormone (ACTH). To examine the involvement of catecholamine cell groups of the ventrolateral medulla (VLM) in the neuroendocrine responses, we have used the c-fos activity mapping technique to compare the effects of hypoxia on VLM catecholamine cells to those on neurosecretory VP and putative corticotropin releasing factor (CRF) containing cells. A limited degree of catecholamine cell activation was evident at predominantly mid-VLM levels at 12% oxygen in the inspired air. Further reduction in inpsirate oxygen levels enhanced recruitment of caudally located VLM catecholamine cells considered to form part of the A1 noradrenergic cell group. Threshold for activation of VP and putative CRF cells occurred at the 10% oxygen level. Unexpectedly, this stimulus also activated neurosecretory oxytocin (OT) cells. With increasing hypoxic severity the number of activated supraoptic VP and OT cells was not significantly different to that observed at the 10% level. However, paraventricular neuroendocrine responses continued to increase with putative CRF containing cells of the medial parvocellular zone having nearly double the level of activity (as measured by the number of cells within this region displaying Fos-like immunoreactivity; FLI) at 6% compared to that apparent to the 10% level of hypoxia. Paraventricular VP cells displaying FLI were also increased at the most severe levels of hypoxia but this effect was much less marked than the medial parvocellular response. Consistent with a role for VLM catecholamine cells in generation of neuroendocrine cell responses to hypoxia, unilateral VLM lesions, restricted to the caudal two thirds of the catecholamine cell column, resulted in significant reductions in the responses of all three cell types. These results, in addition to establishing a role for VLM catecholamine cells in neuroendocrine cell responses to systemic hypoxia, have important general implications for catecholamine cell group involvement in neuroendocrine regulation.

Back to top

In this issue

The Journal of Neuroscience: 15 (12)
Journal of Neuroscience
Vol. 15, Issue 12
1 Dec 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of ventrolateral medulla catecholamine cells in hypothalamic neuroendocrine cell responses to systemic hypoxia
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Role of ventrolateral medulla catecholamine cells in hypothalamic neuroendocrine cell responses to systemic hypoxia
DW Smith, KM Buller, TA Day
Journal of Neuroscience 1 December 1995, 15 (12) 7979-7988; DOI: 10.1523/JNEUROSCI.15-12-07979.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Role of ventrolateral medulla catecholamine cells in hypothalamic neuroendocrine cell responses to systemic hypoxia
DW Smith, KM Buller, TA Day
Journal of Neuroscience 1 December 1995, 15 (12) 7979-7988; DOI: 10.1523/JNEUROSCI.15-12-07979.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.