Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Role of neural activity during synaptogenesis in Drosophila

J Jarecki and H Keshishian
Journal of Neuroscience 1 December 1995, 15 (12) 8177-8190; DOI: https://doi.org/10.1523/JNEUROSCI.15-12-08177.1995
J Jarecki
Department of Genetics, Yale University, New Haven, Connecticut 06511, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Keshishian
Department of Genetics, Yale University, New Haven, Connecticut 06511, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This article reveals a novel aspect in the regulation of synaptic connectivity in Drosophila. Reducing neural activity genetically or pharmacologically disrupts the normally precise embryonic and larval neuromuscular connections. In third instar larvae with mutations that affect sodium channel function or expression such as no action potential, temperature-induced paralysis E, or seizure1, foreign neuromuscular synapses, arising from inappropriate nerve sources, are observed on muscle fibers throughout the abdominal body wall. Their frequencies increase as neural activity is further reduced in double mutant combinations. These foreign connections are first observed during late embryogenesis as filopodial-like contacts, but critical period analysis suggests that neural activity must be reduced during both late embryogenesis and the first larval instar to promote the differentiation of these embryonic contacts into foreign motor synapses. In addition, the loss of electrical activity in the motoneuron, as opposed to the loss of postsynaptic potentials in the muscle fibers, appears to be responsible for these changes in connectivity. Our experiments suggest that neural activity may function during development by preventing inappropriate connections and thereby maintaining the precise connectivity achieved during nerve outgrowth and target selection.

Back to top

In this issue

The Journal of Neuroscience: 15 (12)
Journal of Neuroscience
Vol. 15, Issue 12
1 Dec 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of neural activity during synaptogenesis in Drosophila
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Role of neural activity during synaptogenesis in Drosophila
J Jarecki, H Keshishian
Journal of Neuroscience 1 December 1995, 15 (12) 8177-8190; DOI: 10.1523/JNEUROSCI.15-12-08177.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Role of neural activity during synaptogenesis in Drosophila
J Jarecki, H Keshishian
Journal of Neuroscience 1 December 1995, 15 (12) 8177-8190; DOI: 10.1523/JNEUROSCI.15-12-08177.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.