Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test

BH Manning and DJ Mayer
Journal of Neuroscience 1 December 1995, 15 (12) 8199-8213; DOI: https://doi.org/10.1523/JNEUROSCI.15-12-08199.1995
BH Manning
Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DJ Mayer
Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Current models of endogenous pain control circuitry emphasize neural substrates within the brainstem and spinal cord. We have recently shown, however, that the central nucleus of the amygdala (Ce) contributes to morphine-induced suppression of formalin-induced nociceptive behaviors. In the four experiments reported here, we investigated the possibility that the Ce also contributes to morphine- induced suppression of simple, spinally mediated nociceptive reflexes. Bilateral N-methyl-D-aspartate (NMDA)-induced lesions of the rat Ce, but not bilateral lesions centered on either the basolateral or medial amygdaloid nucleus, abolished the antinociception produced by 2.5 mg/kg morphine sulfate in the noxious heat-evoked tail-flick test. Bilateral Ce lesions also abolished the antinociception produced by 2 or 4 mg/kg morphine sulfate, but a relatively large dose of morphine sulfate (10 mg/kg, s.c.) resulted in partial reinstatement of antinociception. It is unlikely that these effects were due to secondary, seizure-induced damage following NMDA injection (e.g., to areas outside the amygdala) since bilateral inactivation of the Ce with the local anesthetic lidocaine also reliably attenuated morphine antinociception. It is also unlikely that these effects were artifacts of lesion-induced hyperalgesia, since Ce lesions failed to result in reliable thermal hyperalgesia, even at baseline tail-flick latencies of 10–12 sec. These data are the first to provide direct evidence that systemically administered morphine requires the integrity of a forebrain area in order to suppress spinally mediated nociceptive reflexes. It is argued that the present results, together with recent evidence linking the Ce to the production of several forms of conditioned and unconditioned environmentally induced antinociception, warrant incorporation of the Ce into current models of endogenous pain control circuitry.

Back to top

In this issue

The Journal of Neuroscience: 15 (12)
Journal of Neuroscience
Vol. 15, Issue 12
1 Dec 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test
BH Manning, DJ Mayer
Journal of Neuroscience 1 December 1995, 15 (12) 8199-8213; DOI: 10.1523/JNEUROSCI.15-12-08199.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test
BH Manning, DJ Mayer
Journal of Neuroscience 1 December 1995, 15 (12) 8199-8213; DOI: 10.1523/JNEUROSCI.15-12-08199.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.