Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Glutaminase-positive and glutaminase-negative pyramidal cells in layer VI of the primary motor and somatosensory cortices: a combined analysis by intracellular staining and immunocytochemistry in the rat

T Kaneko, Y Kang and N Mizuno
Journal of Neuroscience 1 December 1995, 15 (12) 8362-8377; https://doi.org/10.1523/JNEUROSCI.15-12-08362.1995
T Kaneko
Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Kang
Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Mizuno
Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Pyramidal neurons in layer VI of the primary motor and somatosensory cortices were examined by a combined method of intracellular recording, biocytin injection, and immunocytochemistry using in vitro slice preparations of rat brain immunofluorescence staining revealed that biocytin-injected pyramidal cells in layer VI were separated into glutaminase (PAG)-immunopositive and PAG-immunonegative cells. Although the two groups of pyramidal cells showed no statistically significant differences in passive membrane properties and spike characteristics, a clear difference was found in spike afterpotentials. Ten of 12 PAG- positive pyramidal cells showed no or a small fast afterhyperpolarization (fAHP), whereas 10 of 11 PAG-negative pyramidal cells displayed a large fAHP. Depolarizing afterpotentials were observed only in PAG-positive pyramidal cells than in PAG-negative cells. In contrast, the arborization of basal dendrites was more developed in PAG-positive pyramidal cells than in PAG-negative cells. The main axons of all the pyramidal cells entered the subcortical axons of all the pyramidal cells entered the subcortical white matter. The local axon collaterals of PAG-positive pyramidal cells were widely spread in the horizontal direction, whereas those of PAG-negative cells were distributed vertically along the dendritic tree. Since PAG is considered to be a marker of glutamatergic neurons in the cerebral cortex, the present results indicate that layer VI pyramidal cells are separated into glutamatergic and nonglutamatergic neurons that have different electrical properties and input-output organizations. Thus, cortical outputs from layer VI are suggested to use at least two distinct systems.

Back to top

In this issue

The Journal of Neuroscience: 15 (12)
Journal of Neuroscience
Vol. 15, Issue 12
1 Dec 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Glutaminase-positive and glutaminase-negative pyramidal cells in layer VI of the primary motor and somatosensory cortices: a combined analysis by intracellular staining and immunocytochemistry in the rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Glutaminase-positive and glutaminase-negative pyramidal cells in layer VI of the primary motor and somatosensory cortices: a combined analysis by intracellular staining and immunocytochemistry in the rat
T Kaneko, Y Kang, N Mizuno
Journal of Neuroscience 1 December 1995, 15 (12) 8362-8377; DOI: 10.1523/JNEUROSCI.15-12-08362.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Glutaminase-positive and glutaminase-negative pyramidal cells in layer VI of the primary motor and somatosensory cortices: a combined analysis by intracellular staining and immunocytochemistry in the rat
T Kaneko, Y Kang, N Mizuno
Journal of Neuroscience 1 December 1995, 15 (12) 8362-8377; DOI: 10.1523/JNEUROSCI.15-12-08362.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.