Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis

C Galli, O Meucci, A Scorziello, TM Werge, P Calissano and G Schettini
Journal of Neuroscience 1 February 1995, 15 (2) 1172-1179; https://doi.org/10.1523/JNEUROSCI.15-02-01172.1995
C Galli
Institute of Neurobiology-CNR, Rome, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O Meucci
Institute of Neurobiology-CNR, Rome, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Scorziello
Institute of Neurobiology-CNR, Rome, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TM Werge
Institute of Neurobiology-CNR, Rome, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Calissano
Institute of Neurobiology-CNR, Rome, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Schettini
Institute of Neurobiology-CNR, Rome, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cerebellar granule cells deprived of depolarizing concentration of extracellular potassium, [K+]o, undergo apoptosis. We here report that this apoptotic process is associated with an immediate and permanent decrease in the levels of free intracellular calcium, [Ca2+]i. Although forskolin and IGF-1 are both able to prevent apoptosis, only forskolin is able to counteract the instantaneous decrease of [Ca2+]i. However, the early effect of forskolin on [Ca2+]i is lost after longer incubation in low [K+]o. The calcium antagonist nifedipine is able to inhibit the survival effect of high [K+]o, while not affecting forskolin and IGF-1 promoted survival, as assessed by viability and genomic DNA analysis. Accordingly, the L-type calcium channels agonist Bay K8644 significantly enhanced the survival of low KCl treated neurons. To temporally characterize the signal transduction events and the essential transcriptional step in cerebellar granule cells apoptosis, we determined the time course of the rescue capacity of high [K+]o, forskolin, IGF-1, and actinomycin D. Addition of high KCl, forskolin, or IGF-1 6 hr after the initial KCl deprivation saves 50% of cells. Remarkably, 50% of neurons loss the potential to be rescued by actinomycin D after only 1 hr in low [K+]o. Finally, we show that the survival promoting activities of high [K+]o, forskolin, and IGF-1 do not require RNA synthesis. We conclude that [Ca2+]i is involved in the survival promoting activity exerted by high [K+]o but not in those of forskolin and IGF-1, and that all three agents, although rescuing neurons from apoptosis through distinct mechanisms of action, do not necessitate RNA transcription.

Back to top

In this issue

The Journal of Neuroscience: 15 (2)
Journal of Neuroscience
Vol. 15, Issue 2
1 Feb 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis
C Galli, O Meucci, A Scorziello, TM Werge, P Calissano, G Schettini
Journal of Neuroscience 1 February 1995, 15 (2) 1172-1179; DOI: 10.1523/JNEUROSCI.15-02-01172.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis
C Galli, O Meucci, A Scorziello, TM Werge, P Calissano, G Schettini
Journal of Neuroscience 1 February 1995, 15 (2) 1172-1179; DOI: 10.1523/JNEUROSCI.15-02-01172.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.