Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons

RJ White and IJ Reynolds
Journal of Neuroscience 1 February 1995, 15 (2) 1318-1328; DOI: https://doi.org/10.1523/JNEUROSCI.15-02-01318.1995
RJ White
Center for Neuroscience, University of Pittsburgh School of Medicine, Pennsylvania 15261.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
IJ Reynolds
Center for Neuroscience, University of Pittsburgh School of Medicine, Pennsylvania 15261.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Utilizing Indo-1 microfluorimetry, we have investigated the role of mitochondria and Na+/Ca2+ exchange in buffering calcium loads induced by glutamate stimulation or depolarization of cultured rat forebrain neurons. A 15 sec pulse of 3 microM glutamate or 50 mM potassium with veratridine was followed by a 2 min wash with a solution containing either Na(+)-free buffer or the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), or both. For glutamate-induced Ca2+ loads, a Na(+)-free wash delayed recovery to baseline by twofold, mitochondrial uncoupling delayed recovery by greater than fourfold, and the combined treatment essentially prevented recovery of [Ca2+]i for the duration of the wash. Although the depolarization stimulus was able to elicit a larger peak [Ca2+]i, the neurons required significantly less time to recover from depolarization- induced Ca2+ loads after identical wash manipulations, indicating a fundamental difference between calcium loads induced by glutamate as opposed to those induced by depolarization. We show evidence that the delayed recovery is not primarily the result of perturbations in intracellular pH regulation and have also demonstrated that a substantial portion of the delayed recovery is independent of Ca2+ entry during the washout phase. We conclude that glutamate and depolarization both induce Ca2+ loads whose buffering is critically dependent on functional mitochondria and secondarily reliant on Na+/Ca2+ exchange. The two systems overlap and seem to be responsible for buffering most of the glutamate-induced Ca2+ load, because manipulations that compromised both systems completely disabled the neurons' ability to recover [Ca2+]i to baseline.

Back to top

In this issue

The Journal of Neuroscience: 15 (2)
Journal of Neuroscience
Vol. 15, Issue 2
1 Feb 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons
RJ White, IJ Reynolds
Journal of Neuroscience 1 February 1995, 15 (2) 1318-1328; DOI: 10.1523/JNEUROSCI.15-02-01318.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons
RJ White, IJ Reynolds
Journal of Neuroscience 1 February 1995, 15 (2) 1318-1328; DOI: 10.1523/JNEUROSCI.15-02-01318.1995
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.