Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Central projections of sensory neurons in the Drosophila embryo correlate with sensory modality, soma position, and proneural gene function

DJ Merritt and PM Whitington
Journal of Neuroscience 1 March 1995, 15 (3) 1755-1767; https://doi.org/10.1523/JNEUROSCI.15-03-01755.1995
DJ Merritt
Department of Zoology, University of New England, Amidale, New South Wales, Australia.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PM Whitington
Department of Zoology, University of New England, Amidale, New South Wales, Australia.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The peripheral nervous system (PNS) of the Drosophila embryo is especially suited for investigating the specification of neuronal identity: the PNS consists of a relatively simple but diverse set of individually identified sensory neurons; mutants, including embryonic lethals, can be readily generated and analyzed; and axon growth can potentially be followed from the earliest stages. We have developed a staining method to reveal the central projections of the full set of sensory neurons in the preterminal abdominal segments of the embryo. The sensory neurons exhibit modality-specific axonal projections in the CNS. The axons of external sense (es) organ neurons, primarily tactile in function, are restricted to a particular region within each neuromere and exhibit a somatotopic mapping within the CNS. The axons of stretch-receptive chordotonal (ch) organs project into a discrete longitudinal fascicle. Sensory neurons with multiple-branched dendrites (md neurons) project into a separate fascicle. A small number of md neurons have distinctive dorsal-projecting axonal processes in the CNS. A classification of sensory neurons based on their axon morphology correlates closely with the identity of the proneural gene responsible for their generation, suggesting that proneural genes play a central role in determining neuronal identity in the PNS of the embryo.

Back to top

In this issue

The Journal of Neuroscience: 15 (3)
Journal of Neuroscience
Vol. 15, Issue 3
1 Mar 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Central projections of sensory neurons in the Drosophila embryo correlate with sensory modality, soma position, and proneural gene function
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Central projections of sensory neurons in the Drosophila embryo correlate with sensory modality, soma position, and proneural gene function
DJ Merritt, PM Whitington
Journal of Neuroscience 1 March 1995, 15 (3) 1755-1767; DOI: 10.1523/JNEUROSCI.15-03-01755.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Central projections of sensory neurons in the Drosophila embryo correlate with sensory modality, soma position, and proneural gene function
DJ Merritt, PM Whitington
Journal of Neuroscience 1 March 1995, 15 (3) 1755-1767; DOI: 10.1523/JNEUROSCI.15-03-01755.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.