Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations

KP Lehre, LM Levy, OP Ottersen, J Storm-Mathisen and NC Danbolt
Journal of Neuroscience 1 March 1995, 15 (3) 1835-1853; https://doi.org/10.1523/JNEUROSCI.15-03-01835.1995
KP Lehre
Anatomical Institute, University of Oslo, Blindern, Norway.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LM Levy
Anatomical Institute, University of Oslo, Blindern, Norway.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
OP Ottersen
Anatomical Institute, University of Oslo, Blindern, Norway.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Storm-Mathisen
Anatomical Institute, University of Oslo, Blindern, Norway.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
NC Danbolt
Anatomical Institute, University of Oslo, Blindern, Norway.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Glutamate, the major excitatory neurotransmitter in brain, is almost exclusively intracellular due to the action of the glutamate transporters in the plasma membranes. To study the localization and properties of these proteins, we have raised antibodies specifically recognizing parts of the sequences of two cloned rat glutamate transporters, GLT-1 (Pines et al., 1992) and GLAST (Storck et al., 1992). On immunoblots the antibodies against GLT-1 label a broad heterogeneous band with maximum density at around 73 kDa, while the antibody against GLAST labels a similarly broad band at around 66 kDa in the cerebellum and a few kilodaltons lower in other brain regions. GLT-1 is expressed at the highest concentrations in the hippocampus, lateral septum, cerebral cortex, and striatum, while GLAST is preferentially expressed in the molecular layer of the cerebellum. However, both transporters are present throughout the brain, and have roughly parallel distributions in the cerebral hemispheres and brainstem. Preembedding light and electron microscopical immunocytochemistry shows that both GLT-1 and GLAST are restricted to astrocytes, which appear to express both proteins concomitantly, but in different proportions in different parts of the brain. Nerve terminal labeling was not observed. Both the amino and carboxyl terminals of GLT- 1 and GLAST are located intracellularly, indicating an even number of transmembrane segments. Antibodies against a synthetic peptide corresponding to amino acid residues 2–11 of the proposed sequence of GLT-1 recognize the native rat brain GLT-1 protein, confirming that the translation initiation site is at the first ATG.

Back to top

In this issue

The Journal of Neuroscience: 15 (3)
Journal of Neuroscience
Vol. 15, Issue 3
1 Mar 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations
KP Lehre, LM Levy, OP Ottersen, J Storm-Mathisen, NC Danbolt
Journal of Neuroscience 1 March 1995, 15 (3) 1835-1853; DOI: 10.1523/JNEUROSCI.15-03-01835.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations
KP Lehre, LM Levy, OP Ottersen, J Storm-Mathisen, NC Danbolt
Journal of Neuroscience 1 March 1995, 15 (3) 1835-1853; DOI: 10.1523/JNEUROSCI.15-03-01835.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.