Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Cone photoreceptor regeneration in adult fish retina: phenotypic determination and mosaic pattern formation

DA Cameron and SS Easter Jr
Journal of Neuroscience 1 March 1995, 15 (3) 2255-2271; https://doi.org/10.1523/JNEUROSCI.15-03-02255.1995
DA Cameron
Department of Biology, University of Michigan, Ann Arbor 48109–1048.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SS Easter Jr
Department of Biology, University of Michigan, Ann Arbor 48109–1048.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The retina of anamniotes (fish and amphibia), unlike the CNS of most vertebrates, can regenerate neurons following injury. Using the highly ordered mosaic of single and double cones in the retina of the adult green sunfish (Lepomis cyanellus) as our model system, we examined the events that followed the surgical excision of a small patch of central retina. After surgery there was a transient elevation in the number, and a change in the distribution, of proliferative cells within the retina. The wound was filled in two ways: a proliferative regeneration of new retina and a nonproliferative movement of the wound boundaries toward the center of the lesion. The nonproliferative movement stretched the surrounding, intact retina. In stretched retina the basic pattern of the cone mosaic was maintained, but it was augmented by new cones, even though cones are not normally generated in intact central retina. The stretch itself likely triggered the anomalous cone production. The new and preexisting cones in stretched retina had their morphological phenotypes influenced by mutual contact, often resulting in atypical morphologies (triple and quadruple cones). In the center of the lesioned area, the regenerated cone mosaic was disordered, had a higher than normal cone density, and contained atypical morphologies. The presence of outer segments and synaptic pedicles suggested that the new cones in regenerated and stretched retina were functional. We interpret these results to mean (1) a stretch-induced decrease in cell density can trigger a compensatory, adaptive neurogenesis, (2) cone morphological phenotypes in fish retina are plastic throughout life, and are influenced by cone-cone contacts, (3) the mechanisms that spatially regulate cone production during normal growth are disrupted regeneration.

Back to top

In this issue

The Journal of Neuroscience: 15 (3)
Journal of Neuroscience
Vol. 15, Issue 3
1 Mar 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cone photoreceptor regeneration in adult fish retina: phenotypic determination and mosaic pattern formation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Cone photoreceptor regeneration in adult fish retina: phenotypic determination and mosaic pattern formation
DA Cameron, SS Easter Jr
Journal of Neuroscience 1 March 1995, 15 (3) 2255-2271; DOI: 10.1523/JNEUROSCI.15-03-02255.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Cone photoreceptor regeneration in adult fish retina: phenotypic determination and mosaic pattern formation
DA Cameron, SS Easter Jr
Journal of Neuroscience 1 March 1995, 15 (3) 2255-2271; DOI: 10.1523/JNEUROSCI.15-03-02255.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.