Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats

YM Chino, EL Smith 3rd, JH Kaas, Y Sasaki and H Cheng
Journal of Neuroscience 1 March 1995, 15 (3) 2417-2433; DOI: https://doi.org/10.1523/JNEUROSCI.15-03-02417.1995
YM Chino
College of Optometry, University of Houston, Texas 77204–6052.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
EL Smith 3rd
College of Optometry, University of Houston, Texas 77204–6052.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JH Kaas
College of Optometry, University of Houston, Texas 77204–6052.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Sasaki
College of Optometry, University of Houston, Texas 77204–6052.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Cheng
College of Optometry, University of Houston, Texas 77204–6052.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

When neurons in primary visual cortex of adult cats and monkeys are deprived of their normal sources of activation by matching lesions in the two retinas, they are capable of acquiring new receptive fields based on inputs from regions of intact retina around the lesions. Although these “reactivated” neurons respond to visual stimuli, quantitative studies of their response characteristics have not been attempted. Thus, it is not known whether these neurons have normal or abnormal features that could contribute to or disrupt an analysis of a visual scene. In this study, we used extracellular single-unit recording methods to investigate their stimulus selectivity and responsiveness. Specifically, we measured the sensitivity of individual neurons to stimulus orientation, direction of drift, spatial frequency, and contrast. Over 98% of all units in the denervated zone of cortex acquired new receptive fields after 3 months of recovery. Newly activated units exhibited strikingly normal orientation tuning, direction selectivity, and spatial frequency tuning when high-contrast (< 40%) stimuli were used. However, contrast thresholds of most neurons were abnormally elevated, and the maximum response amplitude under optimal stimulus conditions was significantly reduced. The results suggest that the striate cortical neurons reactivated during topographic reorganization are capable of sending functionally meaningful signals to more central structures provided that the visual scene contains relatively high contrast images.

Back to top

In this issue

The Journal of Neuroscience: 15 (3)
Journal of Neuroscience
Vol. 15, Issue 3
1 Mar 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats
YM Chino, EL Smith, JH Kaas, Y Sasaki, H Cheng
Journal of Neuroscience 1 March 1995, 15 (3) 2417-2433; DOI: 10.1523/JNEUROSCI.15-03-02417.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats
YM Chino, EL Smith, JH Kaas, Y Sasaki, H Cheng
Journal of Neuroscience 1 March 1995, 15 (3) 2417-2433; DOI: 10.1523/JNEUROSCI.15-03-02417.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.