Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

The first retinal axons and their microenvironment in zebrafish: cryptic pioneers and the pretract

JD Burrill and SS Easter Jr
Journal of Neuroscience 1 April 1995, 15 (4) 2935-2947; https://doi.org/10.1523/JNEUROSCI.15-04-02935.1995
JD Burrill
Department of Biology, University of Michigan, Ann Arbor 48109–1048, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SS Easter Jr
Department of Biology, University of Michigan, Ann Arbor 48109–1048, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The initial development of the optic tract was studied with light and electron microscopy in the zebrafish (Danio rerio). Intraocular injections of the fluorescent marker, 1,1′-dioctadecyl-3,3,3′,3′ tetramethylindocarbocyanine perchlorate (dil), labeled retinal axons and growth cones anterogradely, and injections of dil into the optic chiasm labeled retinal ganglion cells retrogradely. Labeled tissue was photoconverted and examined electron microscopically. The ventronasal retinal quadrant produced the first growth cones. They were the first growth cones in the optic stalk. The leading retinal growth cones, typically 4–10 in number, advanced alongside the tract of the postoptic commissure but rarely sent filopodia into it and never wrapped its axons. Instead, the retinal growth cones followed a pretract, a subpial region that was morphologically distinct from its surroundings and extended out in front of the leading growth cones, presaging the optic tract. Thus, the retinal growth cones, previously thought to be followers of preexisting axons, are actually cryptic pioneers whose proximity to the earlier axons masks their pioneering nature. We suggest that cryptic pioneers and pretracts are probably common elsewhere in the nervous system.

Back to top

In this issue

The Journal of Neuroscience: 15 (4)
Journal of Neuroscience
Vol. 15, Issue 4
1 Apr 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The first retinal axons and their microenvironment in zebrafish: cryptic pioneers and the pretract
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The first retinal axons and their microenvironment in zebrafish: cryptic pioneers and the pretract
JD Burrill, SS Easter Jr
Journal of Neuroscience 1 April 1995, 15 (4) 2935-2947; DOI: 10.1523/JNEUROSCI.15-04-02935.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The first retinal axons and their microenvironment in zebrafish: cryptic pioneers and the pretract
JD Burrill, SS Easter Jr
Journal of Neuroscience 1 April 1995, 15 (4) 2935-2947; DOI: 10.1523/JNEUROSCI.15-04-02935.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.