Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
PreviousNext
Articles

Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons

A Randall and RW Tsien
Journal of Neuroscience 1 April 1995, 15 (4) 2995-3012; DOI: https://doi.org/10.1523/JNEUROSCI.15-04-02995.1995
A Randall
Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, California 94305, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RW Tsien
Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, California 94305, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The diversity of Ca2+ channel types in rat cerebellar granule neurons was investigated with whole-cell recordings (5 mM external Ba2+). Contributions of five different high-voltage-activated Ca2+ channel current components were distinguished pharmacologically. Nimodipine- sensitive L-type current and omega-CTx-GVIA-sensitive N-type current contributed 15 and 20% of the total current, respectively. The bulk of the remaining current (46%) was inhibited by omega-Aga-IVA. The current blocked by this toxin was further subdivided into two components, P- type and Q-type, on the basis of differences in their inactivation kinetics and sensitivity to omega-Aga-IVA. P-Type current was noninactivating during 0.1 sec depolarizations, half-blocked at about 1- 3 nM omega-Aga-IVA, and contributed approximately 11% of the total current; Q-type current was prominently inactivating, half-blocked at approximately 90 nM omega-Aga-IVA, and comprised 35% of the total current. Both P- and Q-type currents were potently inhibited by the Conus magus toxin omega-CTx-MVIIC. A current component resistant to all of the aforementioned blockers (R-type) displayed more rapid inactivation than the other components and constituted 19% of the total current. The Q-type current, the largest of the current components in the granule neurons, resembles currents that can be generated in Xenopus oocytes by expression of cloned alpha 1A subunits.

Back to top

In this issue

The Journal of Neuroscience: 15 (4)
Journal of Neuroscience
Vol. 15, Issue 4
1 Apr 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons
A Randall, RW Tsien
Journal of Neuroscience 1 April 1995, 15 (4) 2995-3012; DOI: 10.1523/JNEUROSCI.15-04-02995.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons
A Randall, RW Tsien
Journal of Neuroscience 1 April 1995, 15 (4) 2995-3012; DOI: 10.1523/JNEUROSCI.15-04-02995.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2019 by the Society for Neuroscience.
JNeurosci   Print ISSN: 0270-6474   Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.