Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice

MW Kelley, DR Talreja and JT Corwin
Journal of Neuroscience 1 April 1995, 15 (4) 3013-3026; DOI: https://doi.org/10.1523/JNEUROSCI.15-04-03013.1995
MW Kelley
Department of Otolaryngology-HNS, University of Virginia School of Medicine, Charlottesville 22908, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DR Talreja
Department of Otolaryngology-HNS, University of Virginia School of Medicine, Charlottesville 22908, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JT Corwin
Department of Otolaryngology-HNS, University of Virginia School of Medicine, Charlottesville 22908, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This study examined the potential for hair cell regeneration in embryonic and neonatal mouse organs of Corti maintained in vitro. Small numbers of hair cells were killed by laser microbeam irradiation and the subsequent recovery processes were monitored by differential interference contrast (DIC) microscopy combined with continuous time- lapse video recordings. Replacement hair cells were observed to develop in lesion sites in embryonic cochleae and on rare occasions in neonatal cochleae. In embryonic cochleae, replacement hair cells did not arise through renewed proliferation, but instead developed from preexisting cells that changed from their normal developmental fates in response to the loss of adjacent hair cells. In cochleae established from neonates, lost hair cells usually were not replaced, but 11 apparently regenerated hair cells and a single hair cell labeled by 3H-thymidine were observed as rare responses to the creation of hair cell lesions in these organs. The results indicate that the organ of Corti can replace lost hair cells during embryonic and on rare occasions during early neonatal development. The ability of preexisting cells to change their developmental fates in response to hair cell death is consistent with the hypothesis that during embryonic development hair cells may inhibit neighboring cells from specializing as hair cells. In neonatal cultures, the rare occurrence of apparently regenerated hair cells indicates that some cells in the postembryonic organ of Corti retain response mechanisms that can lead to self-repair.

Back to top

In this issue

The Journal of Neuroscience: 15 (4)
Journal of Neuroscience
Vol. 15, Issue 4
1 Apr 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice
MW Kelley, DR Talreja, JT Corwin
Journal of Neuroscience 1 April 1995, 15 (4) 3013-3026; DOI: 10.1523/JNEUROSCI.15-04-03013.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice
MW Kelley, DR Talreja, JT Corwin
Journal of Neuroscience 1 April 1995, 15 (4) 3013-3026; DOI: 10.1523/JNEUROSCI.15-04-03013.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.