Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Interactions between segmental homologs and between isoneuronal branches guide the formation of sensory terminal fields

WB Gan and ER Macagno
Journal of Neuroscience 1 May 1995, 15 (5) 3243-3253; DOI: https://doi.org/10.1523/JNEUROSCI.15-05-03243.1995
WB Gan
Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ER Macagno
Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Process outgrowth and peripheral field innervation by an identified mechanosensory neuron were examined in the intact embryonic leech. The dorsal pressure-sensitive (PD) neurons of the leech CNS are found as bilateral pairs in every segmental ganglion, and are amenable to study at early ages in intact embryos. Each PD has one major axonal projection that putatively pioneers the nerve to the dorsal body wall and branches extensively in its own segment, and two minor projections that innervate, via neighboring ganglia, smaller areas in adjacent segments. We found that adjacent embryonic PD cells form overlapping terminal fields in the body wall, but that the extent of overlap was governed by inhibitory interactions among these fields. When one PD neuron was ablated, the adjacent PD cell changed its peripheral arborization by (1) its major axon producing more filopodia and extending longer side branches toward the ablated cell and (2) its minor axon producing a large arbor in the operated segment. Interestingly, although growth was biased toward the side of the ablated neuron, reduced outgrowth of the PD cell was found on the side away from the ablation, while the total extent of arborization of the PD cell kept relatively constant. Further, we found that axotomy of the major PD projection resulted in extensive outgrowth of its minor projections. These results suggest that a single PD neuron has a limited capacity for growth, each of its branches growing at the expense of the others, and that inhibitory interactions between neighboring PD neurons influence the extent and direction of that growth.

Back to top

In this issue

The Journal of Neuroscience: 15 (5)
Journal of Neuroscience
Vol. 15, Issue 5
1 May 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Interactions between segmental homologs and between isoneuronal branches guide the formation of sensory terminal fields
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Interactions between segmental homologs and between isoneuronal branches guide the formation of sensory terminal fields
WB Gan, ER Macagno
Journal of Neuroscience 1 May 1995, 15 (5) 3243-3253; DOI: 10.1523/JNEUROSCI.15-05-03243.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Interactions between segmental homologs and between isoneuronal branches guide the formation of sensory terminal fields
WB Gan, ER Macagno
Journal of Neuroscience 1 May 1995, 15 (5) 3243-3253; DOI: 10.1523/JNEUROSCI.15-05-03243.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.