Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Axoplasm enriched in a protein mobilized by nerve injury induces memory- like alterations in Aplysia neurons

RT Ambron, MF Dulin, XP Zhang, R Schmied and ET Walters
Journal of Neuroscience 1 May 1995, 15 (5) 3440-3446; DOI: https://doi.org/10.1523/JNEUROSCI.15-05-03440.1995
RT Ambron
Department of Anatomy, Columbia University, New York, New York 10032, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MF Dulin
Department of Anatomy, Columbia University, New York, New York 10032, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
XP Zhang
Department of Anatomy, Columbia University, New York, New York 10032, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Schmied
Department of Anatomy, Columbia University, New York, New York 10032, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ET Walters
Department of Anatomy, Columbia University, New York, New York 10032, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Axon regeneration after injury and long-term alterations associated with learning both require protein synthesis in the neuronal cell body, but the signals that initiate these changes are largely unknown. Direct evidence that axonal injury activates molecular signals in the axon was obtained by injecting axoplasm from crushed or uncrushed nerves into somata of sensory neurons with uncrushed axons. Those injected with crush axoplasm behaved as if their axons had been crushed, exhibiting increases in both repetitive firing and spike duration, and a decrease in spike afterhyperpolarization 1 d after injection. Because similar changes occur in the same cells after learning, these data suggest that some of the long-lasting adaptive changes that occur after injury and learning may be induced by common axoplasmic signals. Since the signals in axoplasm must be conveyed to the cell soma, we have begun to test the hypothesis that at least some of these signals are proteins containing a nuclear localization signal (NLS). Axoplasmic proteins at the crush site and those that accumulated at a ligation proximal to the crush were probed with an antibody to an amino acid sequence (sp) containing a NLS that provides access to the retrograde transport/nuclear import pathway. One protein, sp97, displayed properties expected of an axonal injury signal: it responded to injury by undergoing an anterograde-to-retrograde change in movement and, when the ligation was omitted, it was transported to the cell bodies of the injured neurons.

Back to top

In this issue

The Journal of Neuroscience: 15 (5)
Journal of Neuroscience
Vol. 15, Issue 5
1 May 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Axoplasm enriched in a protein mobilized by nerve injury induces memory- like alterations in Aplysia neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Axoplasm enriched in a protein mobilized by nerve injury induces memory- like alterations in Aplysia neurons
RT Ambron, MF Dulin, XP Zhang, R Schmied, ET Walters
Journal of Neuroscience 1 May 1995, 15 (5) 3440-3446; DOI: 10.1523/JNEUROSCI.15-05-03440.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Axoplasm enriched in a protein mobilized by nerve injury induces memory- like alterations in Aplysia neurons
RT Ambron, MF Dulin, XP Zhang, R Schmied, ET Walters
Journal of Neuroscience 1 May 1995, 15 (5) 3440-3446; DOI: 10.1523/JNEUROSCI.15-05-03440.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.