Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Modular organization of the pontine nuclei: dendritic fields of identified pontine projection neurons in the rat respect the borders of cortical afferent fields

C Schwarz and P Thier
Journal of Neuroscience 1 May 1995, 15 (5) 3475-3489; DOI: https://doi.org/10.1523/JNEUROSCI.15-05-03475.1995
C Schwarz
Sektion fur Visuelle Sensomotorik, Neurologische Universitatsklinik Tubingen, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Thier
Sektion fur Visuelle Sensomotorik, Neurologische Universitatsklinik Tubingen, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cortical afferents transferring information destined for the cerebellum terminate in the pontine nuclei (PN) in a divergent and patchy fashion. We investigated whether the form of dendritic fields of pontine projection neurons which are postsynaptic to the cortical afferents are related to this patchy pattern. To this end we used a triple combination of (1) retrograde labeling (injection of Fluorogold into the brachium pontis), (2) anterograde labeling [injection of Dil into cortical areas A17 and Sml(forelimb)], and (3) subsequent intracellular fills of identified projection neurons (Lucifer yellow) in slightly fixed slices of pontine brainstem. In 64 projection neurons whose somata were located within 160 microns of the border defined by cortical afferent fields, most of the dendritic trees were found to respect the border. Strikingly, proximal dendrites which were oriented toward the border often bent in order to avoid the boundary. This observation was supported by a quantitative analysis. It revealed that overlap areas of dendritic fields with the neighboring compartment were significantly smaller than those of hypothetical, radially organized dendritic fields of the same size, indicating that the dendritic fields are indeed confined to single compartments. In a second series of experiments, double injections of the anterograde tracers Dil and DiAsp into adjacent sites within one cortical area (A17 or Sml) were made in order to test if the topology of the cortical map is preserved within individual pontine compartments. This, however, does not seem to be the case, since the terminal fields displayed a complex pattern of overlap and nonoverlap rather than a consistent shift of terminal fields expected in the case of preserved topology. The results of the present study are consistent with the view that pontine modules independently process information from different parts of individual cortical areas. We suggest that this characteristic property of the corticopontine projection system might be the morphological basis of the well established fact that somatotopically continuous sensory maps in the cortex are transformed into maps at the level of the cerebellar cortex, showing a fractured somatotopy.

Back to top

In this issue

The Journal of Neuroscience: 15 (5)
Journal of Neuroscience
Vol. 15, Issue 5
1 May 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Modular organization of the pontine nuclei: dendritic fields of identified pontine projection neurons in the rat respect the borders of cortical afferent fields
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Modular organization of the pontine nuclei: dendritic fields of identified pontine projection neurons in the rat respect the borders of cortical afferent fields
C Schwarz, P Thier
Journal of Neuroscience 1 May 1995, 15 (5) 3475-3489; DOI: 10.1523/JNEUROSCI.15-05-03475.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Modular organization of the pontine nuclei: dendritic fields of identified pontine projection neurons in the rat respect the borders of cortical afferent fields
C Schwarz, P Thier
Journal of Neuroscience 1 May 1995, 15 (5) 3475-3489; DOI: 10.1523/JNEUROSCI.15-05-03475.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.