Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans

DJ Dijk and CA Czeisler
Journal of Neuroscience 1 May 1995, 15 (5) 3526-3538; DOI: https://doi.org/10.1523/JNEUROSCI.15-05-03526.1995
DJ Dijk
Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CA Czeisler
Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The role of the endogenous circadian pacemaker in the timing of the sleep-wake cycle and the regulation of the internal structure of sleep, including REM sleep, EEG slow-wave (0.75–4.5 Hz) and sleep spindle activity (12.75–15.0 Hz) was investigated. Eight men lived in an environment free of time cues for 33–36 d and were scheduled to a 28 hr rest-activity cycle so that sleep episodes (9.33 hr each) occurred at all phases of the endogenous circadian cycle and variations in wakefulness preceding sleep were minimized. The crest of the robust circadian rhythm of REM sleep, which was observed throughout the sleep episode, was positioned shortly after the minimum of the core body temperature rhythm. Furthermore, a sleep-dependent increase of REM sleep was present, which, interacting with the circadian modulation, resulted in highest values of REM sleep when the end of scheduled sleep episodes coincided with habitual wake-time. Slow-wave activity decreased and sleep spindle activity increased in the course of all sleep episodes. Slow-wave activity in non-REM sleep exhibited a low amplitude circadian modulation which did not parallel the circadian rhythm of sleep propensity. Sleep spindle activity showed a marked endogenous circadian rhythm; its crest coincident with the beginning of the habitual sleep episode. Analyses of the (nonadditive) interaction of the circadian and sleep-dependent components of sleep propensity and sleep structure revealed that the phase relation between the sleep-wake cycle and the circadian pacemaker during entrainment promotes the consolidation of sleep and wakefulness and facilitates the transitions between these vigilance states.

Back to top

In this issue

The Journal of Neuroscience: 15 (5)
Journal of Neuroscience
Vol. 15, Issue 5
1 May 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans
DJ Dijk, CA Czeisler
Journal of Neuroscience 1 May 1995, 15 (5) 3526-3538; DOI: 10.1523/JNEUROSCI.15-05-03526.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans
DJ Dijk, CA Czeisler
Journal of Neuroscience 1 May 1995, 15 (5) 3526-3538; DOI: 10.1523/JNEUROSCI.15-05-03526.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.