Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Activity-dependent reduction in voltage-dependent calcium current in a crayfish motoneuron

SJ Hong and GA Lnenicka
Journal of Neuroscience 1 May 1995, 15 (5) 3539-3547; https://doi.org/10.1523/JNEUROSCI.15-05-03539.1995
SJ Hong
Department of Biological Sciences, University at Albany, SUNY 12222, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GA Lnenicka
Department of Biological Sciences, University at Albany, SUNY 12222, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The effect of increased impulse activity upon voltage-dependent Ca2+ currents was studied in the cell body of a crayfish phasic motoneuron using two-electrode voltage-clamp technique. Increased electrical activity in this relatively inactive motoneuron produces a short-term and long-term reduction in the voltage-dependent Ca2+ current. Both forms of activity-dependent reduction in Ca2+ current are Ca2+ dependent. The short-term reduction in Ca2+ current appears to involve the Ca(2+)-dependent inactivation of Ca2+ channels, previously described in a variety of neurons. The long-term reduction in Ca2+ current is produced by prolonged Ca2+ influx and persists for days: in vivo stimulation of the phasic motor axon at 5 Hz for 1 hr results in a 30% reduction in Ca2+ current density, which persists for at least 3 d. Both the short-term and long-term reductions in Ca2+ current appear to result from changes in a single type of high-voltage-activated (HVA) Ca2+ channel. Inhibition of protein synthesis attenuates the long-term reduction in Ca2+ current and has no effect upon the short-term Ca2+ current reduction. During the long-term reduction in Ca2+ current, it appears that Ca2+ channels located distant to the site of Ca2+ influx are affected. The relationship of these results to a previously described Ca(2+)-dependent reduction in transmitter release is discussed.

Back to top

In this issue

The Journal of Neuroscience: 15 (5)
Journal of Neuroscience
Vol. 15, Issue 5
1 May 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Activity-dependent reduction in voltage-dependent calcium current in a crayfish motoneuron
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Activity-dependent reduction in voltage-dependent calcium current in a crayfish motoneuron
SJ Hong, GA Lnenicka
Journal of Neuroscience 1 May 1995, 15 (5) 3539-3547; DOI: 10.1523/JNEUROSCI.15-05-03539.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Activity-dependent reduction in voltage-dependent calcium current in a crayfish motoneuron
SJ Hong, GA Lnenicka
Journal of Neuroscience 1 May 1995, 15 (5) 3539-3547; DOI: 10.1523/JNEUROSCI.15-05-03539.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.