Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Effects of dopamine depletion on the morphology of medium spiny neurons in the shell and core of the rat nucleus accumbens

GE Meredith, P Ypma and DS Zahm
Journal of Neuroscience 1 May 1995, 15 (5) 3808-3820; DOI: https://doi.org/10.1523/JNEUROSCI.15-05-03808.1995
GE Meredith
Department of Anatomy and Embryology, Faculty of Medicine, Vrije University, Amsterdam, The Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Ypma
Department of Anatomy and Embryology, Faculty of Medicine, Vrije University, Amsterdam, The Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DS Zahm
Department of Anatomy and Embryology, Faculty of Medicine, Vrije University, Amsterdam, The Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Nucleus accumbens receives a dense dopaminergic innervation which is important in regulating motivated states of behavior such as goal- directed actions, stimulus-reward associations and reinforcement of addictive substances. The shell and core territories of this nucleus each receive functionally and morphologically distinct dopaminergic inputs and lesions of the ascending pathways totally deprive the core but not the shell of dopaminergic fibers. Medium spiny neurons are the principal targets of dopaminergic terminals. The present study explored whether the loss of dopamine inputs can affect these neurons and whether cells in the shell and core would be equally susceptible to such a loss. Intracellular injection in fixed slices and neuronal reconstruction were used to analyze the dendritic trees of 62 neurons in the shell and core of animals that received a unilateral, chronic 6- hydroxydopamine lesion of the medial forebrain bundle. In the dopamine- depleted core, dendrites are significantly shorter (16% decrease) than in the intact core and in both the dopamine-depleted core and lateral shell, dendrites are less spiny than in respective control regions. Dopamine loss in the medial shell is associated with significantly more tortuous dendrites that are lower in spine density. However, the number of spines is not reduced which may mean that the increase recorded for segment length, although insignificant in tests, could be responsible for the change in spine density. These data suggest that the loss of dopamine can affect accumbal neuronal morphology and, moreover, can affect neuronal structures differentially in the shell and core.

Back to top

In this issue

The Journal of Neuroscience: 15 (5)
Journal of Neuroscience
Vol. 15, Issue 5
1 May 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effects of dopamine depletion on the morphology of medium spiny neurons in the shell and core of the rat nucleus accumbens
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Effects of dopamine depletion on the morphology of medium spiny neurons in the shell and core of the rat nucleus accumbens
GE Meredith, P Ypma, DS Zahm
Journal of Neuroscience 1 May 1995, 15 (5) 3808-3820; DOI: 10.1523/JNEUROSCI.15-05-03808.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Effects of dopamine depletion on the morphology of medium spiny neurons in the shell and core of the rat nucleus accumbens
GE Meredith, P Ypma, DS Zahm
Journal of Neuroscience 1 May 1995, 15 (5) 3808-3820; DOI: 10.1523/JNEUROSCI.15-05-03808.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.