Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors

MT Taber and HC Fibiger
Journal of Neuroscience 1 May 1995, 15 (5) 3896-3904; DOI: https://doi.org/10.1523/JNEUROSCI.15-05-03896.1995
MT Taber
Department of Psychiatry, University of British Columbia, Vancouver, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HC Fibiger
Department of Psychiatry, University of British Columbia, Vancouver, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In vivo microdialysis was used to assess the effects of electrical stimulation of the prefrontal cortex (PFC) on dopamine (DA) release in the nucleus accumbens (NAC) of awake, unrestrained rats. The PFC was stimulated bilaterally for 20 min at parameters previously shown to support intracranial self-stimulation in this structure. Stimulation at 50 microA evoked a 38% increase in DA release while 100 microA produced a 69% increase. Thus, phasic activation of the PFC increases DA release in the NAC. Additional experiments were performed to establish whether glutamate receptors in the NAC mediated these effects. The noncompetitive NMDA antagonist dizocilpine maleate (MK-801) and the broad spectrum competitive antagonist kynurenic acid were each applied locally to the NAC via reverse dialysis alone or in combination with electrical stimulation of the PFC (100 microA). Both MK-801 (10 microM) and kynurenic acid (5 mM) increased DA release when administered alone. When a “subthreshold” concentration (i.e., the highest concentration employed that did not itself increase DA release) of either compound was administered together with PFC stimulation, neither kynurenic acid (1 mM) nor MK-801 (1 microM) attenuated the effect of stimulation on DA release, thereby indicating that this effect is not mediated by ionotropic glutamate receptors located within the NAC. To examine the possible role of metabotropic glutamate receptors in regulating DA release, the metabotropic glutamate agonist trans(1S,3R)-1- aminocyclopentane-1,3-dicarboxylic acid (ACPD) was employed. When applied locally to the NAC, ACPD had a dose-dependent effect on DA release with a high concentration (1 mM) causing an increase and a lower concentration (100 microM) causing a small decrease.

Back to top

In this issue

The Journal of Neuroscience: 15 (5)
Journal of Neuroscience
Vol. 15, Issue 5
1 May 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors
MT Taber, HC Fibiger
Journal of Neuroscience 1 May 1995, 15 (5) 3896-3904; DOI: 10.1523/JNEUROSCI.15-05-03896.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors
MT Taber, HC Fibiger
Journal of Neuroscience 1 May 1995, 15 (5) 3896-3904; DOI: 10.1523/JNEUROSCI.15-05-03896.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.